Comment on “Reliability of the 0-1 test for chaos”

Georg A. Gottwald∗
Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Ian Melbourne†
Mathematics and Statistics, University of Surrey, Guildford, Surrey GU2 7XH, UK

Recently Hu, Tung, Gao and Cao investigated the 0-1 test for chaos. By looking at random data and at data stemming from the one-dimensional logistic map they concluded that the test is unreliable. Moreover they claim that a method developed by Gao and Zheng is superior to the 0-1 test. We explain why their criticism and claims are unfounded.

Keywords: Chaos, dynamical systems, nonlinear time series analysis

PACS numbers: 05.45.-a

Recently a paper appeared [1] in which the 0-1 test for chaos [2, 3] was investigated with respect to its reliability. The authors accepted the reliability for distinguishing between regular and fully developed chaos. However, their conclusions were largely negative, and they presented another method which was claimed to be superior. In this Comment, we compute $K(n)$ by performing a least square fit for $\log N/n$ to ensure that $0 < n < N$. Then we compute $K(n)$ and the asymptotic growth rate $K = \lim_{n \to \infty} \log M(n)/\log n$. If the underlying dynamics is regular (i.e. periodic or quasi-periodic) then $K = 0$; if the underlying dynamics is chaotic then $K = 1$. (We refer to [2, 3] for the justification of these statements.)

In practice, let N denote the amount of data. Throughout this Comment, we compute $M(n)$ for $N/100 < n \leq N/10$ to ensure that $0 < n < N$. Then we compute K by performing a least square fit for $\log M(n)$ versus $\log n$. This is done for 100 randomly chosen values of c and the median value of K is the final output of the test (cf. [3]).

Section II of [1] is devoted to “understanding” the test for chaos, namely that the test examines how the variance of the auxiliary process $p(n)$ scales with time. This interpretation is correct but was already present in the original paper. Indeed, the “R-extension” discussed in [2, Section 5] corresponds exactly to the “fluctuation analysis” in [1]. As mentioned explicitly in [2, Section 5], the necessity to subtract off the mean is a nontrivial obstruction, whereas a crucial property of the 0-1 test (which is an “SE(2)-extension”) is that the mean automatically vanishes (due to rotation symmetry in the plane). A deeper understanding of the 0-1 test would recognize the issue with the mean which underlies the development of the test in [2].

The mathematics behind the test establishes a dichotomy for deterministic systems: bounded or diffusive behaviour of the mean zero random walk. This is one of the strengths of the test, a binary diagnostic 0 or 1, with no grey areas in principle. (There are always grey areas in practice for any test.) Hence Section III of [1] which highlights the “misclassification” of $1/f^\alpha$ noise (it is shown that the 0-1 test yields $K = 1$ independent of the choice of α) has missed the point. Moreover, it is a misapplication of the test; as clearly stated in both our manuscripts [2, 3] the test is designed for deterministic (but possible noisy) systems. (Indeed, the paper [2] is entitled “A new test for chaos in deterministic systems”.) The problem of distinguishing between chaotic and stochastic dynamics —although of obvious practical importance — is different from the problem we are working on and hence is not grounds for criticism.

Section IV of [1] discusses the “edge of chaos” and “weak chaos” in the context of the logistic map $x_{n+1} = ax_n(1 - x_n) + \sigma \eta_n$ where a is the bifurcation parameter and $\eta_n \sim N(0, 1)$. It is claimed that the 0-1 test cannot distinguish properly the edge of chaos at $a = a_{\infty} = 3.569945672...$ and weak chaos at $a = a_{\infty} + 0.001$. We refute this claim below on three different levels: (i) For the parameters considered in [1] a visual version of our test is effective; (ii) For most practical purposes the automated test is effective with a moderate amount of data; (iii) In theory the automated test works with probability one. For brevity, we restrict to clean data $\sigma = 0$ (see [3] for noisy data).

Starting with (i), for the specific parameters a_{∞} and $a_{\infty} + 0.001$ we computed K versus N up to $N = 50,000$. The results are shown in Fig. 1 and show a clear func-

∗Electronic address: gottwald@maths.usyd.edu.au
†Electronic address: ism@math.uh.edu
tional difference of $K(N)$. Also defining $p(n)$ as in (1) and $q(n) = \sum_{j=1}^{n} \Phi(j) \sin j \epsilon$, we plotted $p(n)$ versus $q(n)$ in Fig. 2. Here $N = 5000$ suffices for an effective visual test. Again this visual test was explicit in the original paper [2, Section 5]. We should emphasise that a major advantage of our test over methods such as [1] is that it is easily automated and in most cases it is not necessary to make a visual interpretation of the results.

For (ii), see Fig. 3 where the results of our test are shown for $N = 5000$. The parameter a is incremented in steps of 0.01 for $3.5 \leq a \leq 4$ and it is clear that the automated test (ie the computed value of K) is effective for most values of a.

Turning to (iii), the dynamics of the logistic map is particularly well understood [4]: almost every value of a yields either a periodic attractor or a chaotic attractor satisfying the Collet-Eckmann condition. It then follows from results in [5] and [6] respectively that with probability one K converges to 0 and 1 as $N \to \infty$.

Finally, [1] use a method developed by one of the authors [7] to demonstrate its superiority over the 0-1 test.

The method, which requires phase-space reconstruction, is a variant of the (unreferenced) method developed by [11] and independently by [12] for calculating the maximal Lyapunov exponent; the difference being that the method is applied for different shells. Normalise so that $\Phi(i) \in [0,1]$ and define $X_i = [\Phi(i), \Phi(i+1), \ldots, \Phi(i+(m-1)\tau)]$ where m is the embedding dimension and τ the time delay. The quantity

$$\Lambda(k) = \langle \ln \left(\frac{\|X_{i+k} - X_{j+k}\|}{\|X_i - X_j\|} \right) \rangle$$

is evaluated for a sequence of shells $r \leq \|X_i - X_j\| \leq r + \Delta r$ with specified radii r and thickness Δr. The claim is that for deterministic chaotic time series there exist values of m and τ such that the quantity $\Lambda(k)$ has a common envelope for different shells with the slope of the envelope at small k being the maximal Lyapunov exponent, whereas stochastic motion is characterised by a non-existence of such a common envelope. This method has been applied to several low-dimensional systems [8] and also to experimental data [9].

The authors show that their method easily distinguishes the edge of chaos and weak chaotic dynamics for the logistic map with noise-free data. As seen in Fig. 1 and Fig. 2 the 0-1 test can distinguish these two cases as well by visual inspection of either the functional dependence of K or the $p-q$-plot.

In [3] we showed that the 0-1 test has certain advantages over classical methods particularly for high-dimensional systems. Difficulties with methods relying on phase-space reconstruction are well documented [10] and it is here that the 0-1 test stands out. We refer to our paper [3] for an examination of the 8-dimensional Lorenz system with measurement noise where we compared against the original method of [11]. In this instance, our test proved to be superior as an absolute test for chaos with respect to methods using phase-space reconstruction.
In conclusion, the claim that the 0-1 test is not reliable is unsubstantiated. The authors chose to focus on (a) situations where the test was not intended to apply, and (b) very specialised situations in tiny regions of parameter space. In this Comment we have reiterated the effectiveness of the 0-1 test outside these regions and established the efficacy of our test in situation (b). The claims in [1] are thus shown to be based on misunderstandings regarding the intended scope and implementation of the test. (These confusions might have been resolved more efficiently if we had been contacted personally, or at least been given the opportunity to referee the criticisms).

We agree with the final comment of the authors that scientists should use all available methods to characterise and analyse complex data; for essentially deterministic data the 0-1 test is such a method. We do not claim that our test will replace traditional methods such as those relying on phase-space reconstruction but that it avoids certain well-documented drawbacks of such tests and hence is likely to be advantageous in certain situations.

Acknowledgments

GAG is partly supported by ARC grant DP0452147. GAG and IM are partly supported by EPSRC grant GR/S22714/01.