University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Hybrid Correlation and Causal Feature Selection for Ensemble Classifiers

Duangsoithong, D and Windeatt, T Hybrid Correlation and Causal Feature Selection for Ensemble Classifiers In: ECML - SUEMA 2010, 2010-09-20 - 2010-09-20, Barcelona, Spain.

Rakkrit Duangsoithong and Terry Windeatt SUEMA10.pdf
Available under License : See the attached licence file.

Download (128kB)
[img] Text (licence)

Download (1kB)


PC and TPDA algorithms are robust and well known prototype algorithms, incorporating constraint-based approaches for causal discovery. However, both algorithms cannot scale up to deal with high dimensional data, that is more than few hundred features. This paper presents hybrid correlation and causal feature selection for ensemble classifiers to deal with this problem. The number of eliminated features, accuracy, the area under the receiver operating characteristic curve (AUC) and false negative rate (FNR) of proposed algorithms are compared with correlation-based feature selection (FCBF and CFS) and causal based feature selection algorithms (PC, TPDA, GS, IAMB).

Item Type: Conference or Workshop Item (Conference Paper)
Divisions : Faculty of Engineering and Physical Sciences > Electronic Engineering > Centre for Vision Speech and Signal Processing
Authors : Duangsoithong, D and Windeatt, T
Depositing User : Symplectic Elements
Date Deposited : 17 Apr 2012 08:48
Last Modified : 06 Jul 2019 05:09

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800