University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Release of ultrafine particles from three simulated building processes

Kumar, P, Mulheron, M and Som, C (2012) Release of ultrafine particles from three simulated building processes Journal of Nanoparticle Research, 14. ISSN 1388-0764

[img]
Preview
PDF
Building Nano_JNanoRes.pdf
Available under License : See the attached licence file.

Download (1749Kb)
[img]
Preview
PDF (licence)
SRI_deposit_agreement.pdf

Download (32Kb)

Abstract

Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5–560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near–steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri–modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei (<10 nm), nucleation (10–30 nm) and accumulation (30–300 nm) modes for individual activities. The measured background size distributions showed modal peaks at about 13 and 49 nm with average background PNCs ~1.47 × 10 4 cm −3 . These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and ‘dry’ and ‘wet’ recycling events were measured as ~0.77, 19.1, 22.7 and 1.76 (×10 4 ) cm −3 , respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; ~95, 79, 73 and 90% of total PNCs, and ~71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for laboratory workplaces and operational building sites.

Item Type: Article
Additional Information: The original publication is available at <a href="http://www.springerlink.com/content/q840881817663561/</a>
Divisions: Faculty of Engineering and Physical Sciences > Civil and Environmental Engineering
Depositing User: Symplectic Elements
Date Deposited: 22 Mar 2012 15:45
Last Modified: 23 Sep 2013 19:20
URI: http://epubs.surrey.ac.uk/id/eprint/356549

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800