On the Interactions between Non-cooperative P2P Overlay and Traffic Engineering Behaviors

Chaojiong Wang, Ning Wang, Michael Howarth
University of Surrey
Guildford, United Kingdom
{C.Wang, N.Wang, M.Howarth}@surrey.ac.uk

George Pavlou
University College London
London, United Kingdom
G.Pavlou@ee.ucl.ac.uk

Abstract— Emerging Peer-to-Peer (P2P) technologies have enabled various types of content to be efficiently distributed over the Internet. In order to achieve optimized user quality of experience, most P2P systems adopt selfish peer selection schemes in the application layer. On the network side, traffic engineering (TE) is deployed by ISPs in order to achieve efficient network resource utilization. These TE operations are typically performed without distinguishing between P2P flows and other types of traffic. Due to inconsistent or even conflicting objectives from the perspectives of P2P overlay and network-level TE, the interactions between the two and their impact on the relevant performance for each is yet to be investigated in detail. In this paper we study such non-cooperative interactions through the modeling of best-reply dynamics in which the P2P overlay and network-level TE optimize their own strategies based on the decision of the other player in the previous round. According to our experiments based on data from the ABILENE network, P2P overlays exhibit strong resilience to adverse TE operations in maintaining end-to-end performance in the application layer. On the other hand, network-level TE may suffer from performance deterioration caused by greedy peer re-selection behaviors in reacting to previous TE adjustments.

I. INTRODUCTION

Today, P2P flows account for some 50%-70% of the overall Internet traffic, according to recent traffic measurements [1, 2]. Under such circumstances, network capacity for other types of services, such as conventional web-based applications, may be impacted due to the potential resource competition with overwhelming P2P traffic. In the literature, traffic engineering (TE) techniques have been proposed for ISPs to optimize customer traffic in order to improve the overall network performance, such as load balancing and network cost reduction. It should be noted that, in general, TE solutions do not distinguish between P2P flows and conventional Internet traffic, which means that traffic optimization is performed in an aggregate fashion, regardless of specific types of flows. In P2P overlay networks, the current implementation of peer selection paradigms are often based on application-layer optimization for enhancing the quality of experience by end users. For instance, real-time multimedia P2P systems usually select partner peers that are associated with low delay in order to achieve fast playback at the user side. On the other hand, the objective of TE is to improve the overall performance at the network side, instead of focusing on individual users. As such, there is an obvious misalignment between the TE objectives and the selfish P2P peer selection in the application layer. As for the two autonomous entities – P2P overlay and network-level TE, the decisions that are made by each one of them may influence the performance of the other. Such interactions may adversely impact the relevant performance on both sides due to “conflicting” operations. For instance, TE may adjust the underlying routing decisions in order to re-optimize network performance, but such a change may also shift some P2P traffic to alternative paths with sub-optimal user-perceived QoS performance (e.g. higher end-to-end delay due to longer paths). As a result, the P2P overlay may react to such dynamics by re-selecting partners in each P2P session in order to regain the original performance in the application layer. Such a behavior will once again change the overall traffic condition so that the underlying TE mechanisms need to react accordingly. This adjustment of network configurations may further trigger re-selection of peers in the P2P overlay. In this paper we investigate the interaction between selfish peer selections and optimized routing configurations in non-cooperative environments.

In the literature, a number of research works [3, 4, 5, 6] have investigated the interaction between TE and overlay network operations. We can classify these works into two different categories: one category focuses on the interactions between network-layer routing configurations decided by TE and logical overlay routing on top [3, 4]. In this scenario, TE and the overlay respectively adjust their own routing strategies in turn, based on each other’s decisions. Compared with this type of interactions, the key difference from our work is as follows: the P2P overlay only considers how to select the best partner peers (i.e. the other endpoint of individual P2P connection sessions), rather than changing the routing configuration in the overlay. The other category [5, 6] focuses on the interaction between network-layer routing decisions made by TE and application-layer content server selections in CDN (Content Distribution Network) –like paradigms. Still, our work also differs from them in the following features. First, in P2P overlay networks, peers, as both content producers and consumers, have highly dynamic join/departure patterns, while in CDNs content servers are statically provisioned in the network for providing content delivery services. In addition, we consider symmetric content exchange patterns: in P2P overlays a peer not only requests data from, but also provides content to other peers, which differs from previous studies in which a specific set of clients only downloads data from a...
number of dedicated content servers. Finally, in P2P overlays each peer needs to simultaneously fetch chunks of content from a set of partners, while in conventional CDNs a client typically requests content from one specific server at a time.

![Diagram](Figure 1: Dynamic interaction between TE and P2P overlay)

In this paper we model TE and P2P overlay as two rational players respectively who play the best-reply dynamics [4]: one player chooses the best response based on the other player’s decisions in the previous round. As shown in Figure 1, TE aims to optimize the overall network performance (e.g. load balancing) through adjusting routing decisions of customer traffic (including both P2P and non-P2P background flows) in the network layer. The outcome of path selection changes by TE for the P2P traffic is then taken as input by the P2P overlay to re-select partner peers in order to regain the original application-level performance (e.g. minimize end-to-end delay between individual peering partners). Such peer reselection further influences the overall traffic distribution in the network, requiring further TE-operations, and so on. Under such interactions, both TE and P2P overlay adjust their own decisions in turn according to each other’s previous behavioral changes. Based on this model, we investigate how well TE and P2P overlay may react to each other in such a non-cooperative environment. As far as TE is concerned, today’s solutions can be classified into IP-based TE and Multi-Protocol Label Switching (MPLS-based) TE. Compared with IP-based TE, the MPLS-based TE is more flexible in the sense that it allows arbitrary splitting of traffic across multiple active label switched paths (LSPs), even at short time-scales. In this paper we specifically focus on the interaction between MPLS-based TE and P2P overlays, as MPLS-based ones are ideal for online traffic adjustment that is agile to short time-scale traffic dynamics. Through our study, we aim to answer the following questions: 1) Regarding stability, is there a Nash equilibrium (NE) in this interaction between TE and P2P overlay behaviors? 2) If the answer is yes, then does NE converge to an improved point? 3) What are the potential impacts on the performance of P2P overlay and network performance under such interactions? We believe that a good understanding of such interactions will offer significant insight into the future development of intelligent Internet P2P traffic management paradigms in dynamic environments.

II. TRAFFIC ENGINEERING & PEER SELECTION

In this section we first specify the modeling of the interactions between MPLS-based TE and selfish peer selection in P2P overlays. Thereafter, a best-reply dynamics model between the two players is presented for analyzing behavioral interactions between them.

Let’s first consider a physical Point-of-Presence (PoP) network topology that is modeled as a unidirectional graph $G = (N, A)$, where N is a set of PoP nodes and A is the set of inter-PoP links. Each physical link $a \in A$ has a bandwidth capacity c_a. The tuple $<i, j>$ is defined as a PoP node pair where $i, j \in N$ refer to a source and a destination PoP node respectively. According to our modeling, each peer is associated with one of the PoP nodes in the PoP-level network topology. The routing of both P2P traffic and conventional background traffic is determined by TE, without any differentiation. Let P_p represent a set of explicit LSPs between PoP nodes i and j, with each LSP consisting of one or multiple inter-PoP links. According to the common practice of ISP network design, bandwidth resources within a single PoP are usually highly over-provisioned, so we only focus on bandwidth resources on inter-PoP links in A. This means if multiple peering neighbors are clustered within the same PoP, then the associated bandwidth consumed by their local peering connections is ignored. According to common MPLS-based TE approaches, multiple LSPs are established between each PoP node pair in order to allow adaptive splitting of the overall traffic demand across them for achieving dynamic load balancing. Let t^{P}_y and t^{NP}_y denote respectively the overall P2P traffic demand and the overall non-P2P background traffic demand from PoP node i to j. Let t_y be the overall traffic demand $t_y = t^{P}_y + t^{NP}_y$, and $X_{ij}^p (0 \leq X_{ij}^p \leq 1)$ be the traffic splitting ratio on each specific LSP $p \in P_p$.

A. Traffic Engineering

TE operations are normally applied by ISPs in order to optimize the overall network performance, such as load balancing and network cost reduction. In our modeling, we consider the objective of TE to be minimizing the maximum link utilization (MLU) which has been widely used as a TE performance metric in the literature. Once again, we emphasize that TE aims to optimize the overall network performance rather than any specific type of traffic, and according to our modeling, TE does not differentiate between P2P traffic and non-P2P background traffic.

As previously mentioned, m ($m>1$) LSPs should be pre-established between each PoP node pair. In our analysis, m disjoined LSPs with the shortest delay are computed between each PoP node pair. We introduce a binary mapping coefficient y_{ij}^p to indicate the relationship between LSP p and physical link a: $y_{ij}^p = 1$ if physical link a is on physical LSP $p \in P_p$, and 0 otherwise. The overall traffic load $T_o = \sum_{a \in A} \sum_{p \in P} \sum_{i,j} x_{ij}^p \cdot t_y \cdot y_{ij}^p$, $(\sum_j x_{ij}^p = 1)$ on the physical link $a \in A$ is the sum of all demands of flow over this link, including both P2P traffic and non-P2P traffic. With a demand matrix $(t_y, \forall i, j \in N)$, the objective of TE is to compute an optimized
value x_{ij}^p (splitting ratio) across LSPs between each source-destination PoP node pairs in order to minimize the overall MLU across the network, i.e.:

$$\min \max_{a \in A} \left(\frac{T_a}{C_a} \right)$$

(1)

MPLS TE can be operated at both long time-scales (e.g. weekly) and short time-scales (e.g. at the scale of minutes or even seconds). To allow for fast reactions to changing traffic conditions (e.g. due to frequent peer reselections in P2P overlay), we consider only low-complexity heuristic solutions without involving global optimizations each time (i.e. only local adjustments are applied). Similar to [6], we consider the generic TE strategy as follows. We identify a set of physical links with high link load and try to iteratively shift some traffic demand away from them in order to better balance the overall traffic distribution. More specifically, TE identifies the top k inter-PoP links with the highest utilization across the entire network, and then some traffic currently traversing those links needs to be shifted away from them. To achieve this, TE needs to re-configure the traffic splitting ratio for m LSPs between some node pairs $<i,j>$ that involve those highly-loaded links. It should be mentioned that the shifting action should not introduce any new hot spots with higher link load than the original ones before the adjustment. Based on this requirement, such traffic shifting through re-optimizing splitting ratios at individual source PoPs can be recursively performed until no further improvement is achieved. Due to the page limit, we do not provide detailed specification of the TE algorithm.

B. Selfish Peer Selection in the P2P Overlay

The P2P overlay aims to optimize performance experienced by end users, e.g. to reduce end-to-end delay between individual peers. This is typically done by localized partner peer selection done in the application layer.

In the modeling of the P2P overlay behavior, we recall that each peer is associated with one of the PoP nodes in the network topology. We also consider multiple simultaneous P2P sessions running over the network, with each session containing a distinct set of active peers sharing the same content. If one end-user participates in multiple sessions, it is treated as an independent peer in each of them. More specifically, let V denote a set of active peers physically attached to network G. Each client peer in P2P session t needs to connect to a set of partner peers from all available peers in session t (denoted by $V(t)$), and download contents from them at certain transmission rates. In this case the actual partner set for a specific client peer u (denoted by $V_u(t)$) is effectively a subset of all the available peers in session t, i.e., $V_u(t) \subseteq V(t)$. On the other hand, let D_a be the delay of physical link $a \in A$, and the delay between a PoP node pair be the sum of the delays associated with each link constituting the LSP that is carrying P2P traffic between each node pair. With intra-PoP delay being ignored, the formal objective in peer selection is to minimize the delay between each single client peer u and each of its selected partner peers i.e.:

$$\min_{<a,v> \in \text{V}(t)} \left(\sum_{a \in A} D_a * Y^a_{u,v} \right)$$

(2)

where $Y^a_{u,v}$ is the mapping coefficient is equal to 1 if the carrying P2P traffic LSP connecting the PoP node pair where peers u and v are respectively attached to contains physical link a, and 0 otherwise.

With such a selfish peer selection paradigm with latency-localization, the P2P overlay may dynamically readjust the partnership connections for every client peer based on own measurements. As we mentioned previously, both non-P2P traffic and P2P traffic are shifted by TE without differentiation for improving the overall network performance. As for P2P traffic, there is the possibility that the end-to-end delay from some existing partner peers to the client peer becomes higher due to the traffic shifting from a shorter LSP to a longer one. In this situation, the P2P overlay may have the opportunity to re-select some new partners with lower delay in order to replace those affected ones by the TE operation, i.e. the partners whose new end-to-end delay to the client peer becomes higher. Such a change at the P2P side inevitably changes the traffic condition input for TE, which may take further adjustment actions.

III. A GAME-THEORY BASED ANALYSIS

In this section we analyze in depth the interaction between MPLS-based TE and selfish peer selection behaviors in P2P overlays. We consider such interaction as best-reply dynamics where each of the two rational players decides its own best strategy in response to the change of behavior of the other player in the previous round. The MPLS-based TE and P2P overlay take turns to optimize their own objectives respectively in this interaction.

In our analysis, the strategy space that is applied by MPLS-based TE can be described as a set of feasible traffic splitting ratios across m distinct LSPs $\{x_{ij}^1, ..., x_{ij}^m\}$ between each PoP node pair $<i,j>$. This can be expressed as:

$$\mathcal{S}_{\text{TE}} = \langle \{x_{ij}^1, ..., x_{ij}^m\} \rangle$$

(3)

Traffic splitting in MPLS-TE is performed on per-flow basis instead of per-packet [7], in which case the P2P flow between each peering partners always follows one single path at any time.

On the other hand, the strategy space of P2P overlay is a set of partner peers $V_u(t)$ of every single client peer u that are selected from all available peers $V(t)$ in each session t. By selecting the best partner peers, the end-to-end delay among peers can be maintained minimum for each client peer in the session.

$$\mathcal{S}_{\text{P2P}} = \langle \ldots , V_u(t) , \ldots \rangle$$

(4)

Based on the above specifications, we apply a Nash game model, which is a non-cooperative non-zero sum game, to model the interaction between MPLS-based TE and selfish peer selection paradigm in the P2P overlay. TE first optimizes the path selection decisions for both non-P2P traffic and P2P traffic without any differentiation. Since the actual delivery paths of P2P traffic are changed by the TE operation, the delay performance from partner peer to client peer may be affected.
In particular, if some P2P traffic is shifted from one LSP to another longer path, the corresponding peers may experience higher end-to-end delay after such a change. In order to maintain the original quality of service as much as possible, the P2P overlay may reactively re-select some alternative partner peers within individual sessions based on measured delay in response to the changed path selection decisions by MPLS-based TE. Due to such reshuffling in peer connections in the P2P overlay following the previous TE operation, the overall traffic condition within the network changes again. It should be noted that, given the fact that P2P traffic dominates overall traffic condition within the network, it may peak at 80%.

The P2P traffic used in our experiments is synthetically generated according to the measured pattern of today’s popular real-time multimedia based P2P applications [10]. We consider 20 concurrent P2P channel sessions, with each channel attracting up to 1000 peers. Hence altogether we consider up to 20000 peers that are distributed across the 11 PoP nodes in the ABILENE network. The overall distribution of these peers in each PoP node is determined according to the actual population of each city (PoP), in which case larger PoP nodes have more peers assigned. The channel session selected by each peer is randomly determined. Without loss of generality, there are both popular channels and unpopular channels on the P2P overlay side. In addition, we follow the observation that each client peer has around 40 peering connections in order to satisfy the overall downloading rate requirement for stable playback (1Mbps, [10]). For each requesting peer, there is one top peer partner which provides on average three times content distributions as other (auxiliary) ones based on the measurement of a popular real-time P2P content delivery system [10].

B. Simulation parameters and scenarios

For simplicity we assume that TE can split aggregated traffic between each PoP node pair \(<i, j>\) onto two disjointed shortest delay LSPs \(m=2\). Such LSPs between each PoP pair follow the first/second shortest delay paths and are disjoined with each other. To make the analysis more comprehensive, we used three scenarios to analyze the interaction between MPLS TE and P2P overlay. We set the overall P2P traffic demand as low, medium and high proportion of the overall network traffic volume, e.g. the P2P traffic accounts for 40% (low), 60% (medium), and 80% (high) of overall network traffic. Such configurations are reasonable as it has been observed that the actual proportion of P2P traffic in the Internet varies significantly and it may peak at 80%.

C. Performance Analysis

As far as traffic splitting in MPLS TE is concerned, we first show in Figure 2 the end-to-end delay ratio of using the second LSP to the first LSP (the lowest delay path) between each pair of PoP nodes in the ABILENE network. This ratio effectively indicates the actual change of delay experienced by the peers whose flows are shifted by TE traffic splitting adjustments from one LSP to the other. From Figure 2 we can see that the
maximum delay ratio is 13:1, minimum ratio is 1:1, and the average is around 2.6:1. Such difference between the two paths may easily result in selfish partner reselections by some affected peers whose flows are shifted from the shorter path to the longer one.

Figure 3: Relative change of MLU for overall traffic

Figure 3 indicates the pattern of the overall MLU performance change that is relative to the initial state (round 1) on per round basis (we consider 100 rounds in our experiments), i.e.

$$\frac{MLU(t)}{MLU(1)} (1 < t < 100)$$

We can clearly see that different proportions of P2P traffic have yielded distinct performance curves. Specifically, the low scenario converges to an equilibrium point which has 8% decrease compared with the MLU value of in the initial state (100%). Similarly, in the medium scenario we can also observe the convergence towards an equilibrium point, but interestingly, the final converged performance has a 5% increase compared with the initial state. Based on the above results, we can see that even if a specific equilibrium exists, it is not always the case that the overall TE performance will converge to an improved performance. The reason is that, after the adjustment of TE, the P2P overlay may selfishly re-select new partner peers which may lead to significantly worse network performance compared with the situation before the TE operation, and the next round of TE operation might not be able to achieve better performance than the previous round. By investigating the high scenario in Figure 3, we can clearly see some oscillation patterns on the MLU performance as the number of rounds increases, and more importantly there is no a specific equilibrium while having a worse MLU performance trend. As we mentioned above, P2P overlay selfishly re-selects the best partners if the original ones experience higher delay following the adjustment of TE. We can conclude that such selfish peer reselection behavior may have some significant (negative) impact on the TE performance in the non-cooperative environment, especially when P2P flows dominate network traffic.

In addition to the overall MLU performance, we also show how the interactions between TE and P2P overlay will impact the performance of background non-P2P traffic. Figure 4 indicates the change of non-P2P traffic utilizations that is relative to the initial state. We can see that in both low and medium scenarios, the background traffic condition is not significantly impacted by the interaction. However, if P2P flows substantially dominate the overall traffic (high scenario); the utilization of non-P2P background traffic may become less stable, with some oscillation observed from the figure. The reason is that, a large number of peer re-selections performed by the P2P overlay causes TE to unilaterally adjust the traffic splitting ratio between two LSPs. Since TE optimizes P2P and non-P2P background traffic without any differentiation, the non-P2P traffic may be impacted by TE optimization in response to P2P reselection behaviors.

Figure 4: Relative change of MLU for non-P2P traffic

In the P2P overlay side, we first show in Figure 5 the change of end-to-end delay performance between individual peers upon the completion of peer reselections after each round. We only consider the peer partners whose connections have been actually affected by the TE operation. We recall that the average delay ratio of traversing the second LSP to the first LSP between each PoP node pair is 2.6. In Figure 5, we can see that for all the three scenarios the end-to-end delay is not significantly impacted (in a negative way) by the TE adjustment for most of the period, and sometimes such performance can be even improved compared with the initial state. This is due to their greedy reactions to the changed delivery paths – alternative partners can be often identified with roughly the same end-to-end delay as compared to the initial state. In Figure 5, the low and medium scenarios finally converge to equilibrium points that have 10% and 7% increase respectively compared with the initial state. The medium
scenario has a regular oscillation pattern from about 5% increase to 20% decrease at last 40 rounds in comparison with the initial state. This observation indicates that the P2P overlay has generally high resilience capability in maintaining end-to-end performance assurance against the change of underlying path selections by TE operations, thanks to the selfish peer selection behaviors.

![Figure 6: Relative change of partner peer churn ratio](image)

Finally we investigate the P2P connection stability performance that is impacted by the TE operations. Towards this end we define the metric of peer churn ratio to analyze the relevant performance at the P2P overlay side. As mentioned before, due to the experiences of higher delay following the adjustment of TE, a set of affected peers may need to re-select some of their partners to replace the original ones whose end-to-end delay performance becomes higher. We define that a requesting peer that has any affected partners is an in-churn peer. This metric for the whole system stability can be defined as No. of Requesting Peers In-Churn. The reason to evaluate such a metric is that the transient time period during reselections may lead to perceivable service disruption for real-time P2P services, and this is in particular the case if a large number of partners need to be replaced for the requesting peer. According to Figure 6, we can see that the high scenario has the lowest peer churn ratio among all the three scenarios. The low scenario has lower churn ratio than first step and can converge to an equilibrium point (60% of the initial state). We also find that medium scenario has significant oscillations after 56th round, but it’s 40% of round 1 at most.

D. General Observations

We now discuss the issues we raised in Section I based on the experimental results. First of all, we can see that it is not always the case that a NE point can be reached. Even if such NE exists, it is not always a Pareto point. According to the MLU performance trends, we find that in the non-cooperative environment, TE does not seem to have high capability in driving the overall network performance to an improved situation when interacting with selfish P2P overlays. This is particularly the case when P2P flows dominate the overall network traffic. On the other hand, the P2P overlay has exhibited high resilience capability to avoid performance degradation in end-to-end delay following the adjustment by TE. Nevertheless, the high proportion of partner re-selection may lead to perceivable service disruption for real-time P2P services.

V. Conclusions

In this paper we use best-reply dynamics to model the non-cooperative interactions between the P2P overlay and network-level TE behaviors, each of which has distinct optimization objectives – the P2P overlay aims to improve the experienced quality in terms of delay for every peer, while TE aims to optimize the overall network resource utilization. The decisions made by each have significant impact on the performance of the other when they optimize potentially conflicting objectives simultaneously. Through the analysis of such interactions based on our simulation experiments, we show that in the non-cooperative network environment TE does not seem to be efficient in optimizing network performance when interacting with a selfish P2P overlay. On the other hand, the P2P overlay is generally resilient against potentially adverse TE operations in terms of end-to-end delay performance. However, with the P2P-based real-time streaming applications being more and more popular, high proportion of peer partner re-selection reacting to TE operations may introduce service disruptions, and this phenomenon needs to be further investigated. We intend to investigate relevant interactions in more detail in our future work.

REFERENCES