University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Localized hexagon patterns of the planar Swift-Hohenberg equation

Lloyd, DJB, Sandstede, B, Avitabile, D and Champneys, AR (2008) Localized hexagon patterns of the planar Swift-Hohenberg equation SIAM Journal on Applied Dynamical Systems, 7 (3). 1049 - 1100. ISSN 1536-0040

[img]
Preview
PDF
fulltext.pdf
Available under License : See the attached licence file.

Download (6MB)
[img]
Preview
PDF (licence)
SRI_deposit_agreement.pdf

Download (33kB)

Abstract

We investigate stationary spatially localized hexagon patterns of the two-dimensional (2D) Swift– Hohenberg equation in the parameter region where the trivial state and regular hexagon patterns are both stable. Using numerical continuation techniques, we trace out the existence regions of fully localized hexagon patches and of planar pulses which consist of a strip filled with hexagons that is embedded in the trivial state. We find that these patterns exhibit snaking: for each parameter value in the snaking region, an infinite number of patterns exist that are connected in parameter space and whose width increases without bound. Our computations also indicate a relation between the limits of the snaking regions of planar hexagon pulses with different orientations and of the fully localized hexagon patches. To investigate which hexagons among the one-parameter family of hexagons are selected in a hexagon pulse or front, we derive a conserved quantity of the spatial dynamical system that describes planar patterns which are periodic in the transverse direction and use it to calculate the Maxwell curves along which the selected hexagons have the same energy as the trivial state. We find that the Maxwell curve lies within the snaking region, as expected from heuristic arguments.

Item Type: Article
Additional Information: Copyright 2008 Society for Industrial and Applied Mathematics
Divisions: Faculty of Engineering and Physical Sciences > Mathematics
Depositing User: Mr Adam Field
Date Deposited: 16 Mar 2012 14:39
Last Modified: 09 Jun 2014 13:35
URI: http://epubs.surrey.ac.uk/id/eprint/294644

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800