University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Neutral modes of a two-dimensional vortex and their link to persistent cat's eyes

Turner, MR, Gilbert, AD and Bassom, AP (2008) Neutral modes of a two-dimensional vortex and their link to persistent cat's eyes Phys. Fluids, 20 (2).

[img]
Preview
PDF
neutralmodes3.1.pdf
Available under License : See the attached licence file.

Download (1035Kb)
[img] Plain Text (licence)
licence.txt

Download (1516b)

Abstract

This paper considers the relaxation of a smooth two-dimensional vortex. to axisymmetry after the application of an instantaneous, weak external strain field. In this limit the disturbance decays exponentially in time at a rate that is linked to a pole of the associated linear inviscid problem (known as a Landau pole). As a model of a typical vortex distribution that can give rise to cat's eyes, here distributions are examined that have a basic Gaussian shape but whose profiles have been artificially flattened about some radius r(c), A numerical study of the Landau poles for this family of vortices shows that as r(c), is varied so the decay rate of the disturbance moves smoothly between poles as the decay rates of two Landau poles cross. Cat's eyes that occur in the nonlinear evolution of a vortex lead to an axisymmetric azimuthally averaged profile with an annulus of approximately uniform vorticity, rather like the artificially flattened profiles investigated.. Based on the stability of such profiles it is found that finite thickness cat's eyes can persist (i.e., the mean profile has a neutral mode) at two distinct radii, and in the limit of a thin flattened region the result that vanishingly thin cat's eyes only persist at a single radius is recovered. The decay of nonaxisymmetric perturbations to these flattened profiles for larger times is investigated and a comparison made with the result for a Gaussian profile. (c) 2008 American Institute of Physics.

Item Type: Article
Divisions: Faculty of Engineering and Physical Sciences > Mathematics
Depositing User: Symplectic Elements
Date Deposited: 24 Jun 2011 16:10
Last Modified: 08 Nov 2013 12:08
URI: http://epubs.surrey.ac.uk/id/eprint/2912

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800