Bounded Retransmission in Event-B||CSP: A Case Study

Steve Schneider, Helen Treharne and Heike Wehrheim

March 21st 2011
Bounded Retransmission in Event-B∥CSP: a Case Study

Steve Schneider¹, Helen Treharne¹, and Heike Wehrheim²

¹Department of Computing, University of Surrey
²Institut für Informatik, Universität Paderborn

Abstract. Event-B||CSP is a combination of Event-B and CSP in which CSP controllers are used in conjunction with Event-B machines to allow a more explicit approach to control flow. Recent results have provided an approach to stepwise refinement of such combinations. This paper presents a simplified Bounded Retransmission Protocol case study, inspired by Abrial’s treatment of this example, to illustrate several aspects new in the approach. The case study includes refinement steps to illustrate four different aspects of this approach to refinement: (1) splitting events; (2) introducing convergent looping behaviour; (3) the relationship between anticipated, convergent, and devolved events; and (4) converging anticipated events.

Keywords: Event-B, CSP, Bounded Retransmission Protocol, Stepwise Refinement

1 Introduction

This paper presents a case study illustrating a refinement chain in a combination of CSP [7] and Event-B [6],[1]. The case study is inspired by Abrial’s treatment of the Bounded Retransmission Protocol [1], which was based on [4]. The approach is founded on the Event-B approach to stepwise refinement, in which additional detail is introduced at each stage, in particular new aspects of the state. New events need careful introduction, to relate to previous events and to control when they can occur. Our approach uses CSP rather than control variables in Event-B to manage the control flow of events in an explicit and visible way.

In Event-B, there are proof obligations at each stage to establish the validity of the refinement. The introduction of CSP allows some of the burden of proof to be handled within the CSP framework. In particular, those obligations concerned with flow of control can be discharged more easily with refinement checks. Establishing properties such as trace refinement and divergence-freedom for a model now allow a degree of automation. The technical details of this approach are given in [9, 8]. The intention of this paper is to illustrate the kind of refinement steps that are now supported, and to provide an example of the approach.
2 Refinement principles

We deal with controlled components consisting of a non-divergent CSP process P_i, and an Event-B machine M_i with its set of events αM_i. A refinement step introduces a new pair P_{i+1} and M_{i+1} as a refinement for P_i and M_i. Events of M_{i+1} can arise in one of two ways:

1. They may be refinements of events of M_i, with either the same name or a different name (this includes events which are exactly the same in each level). Refinement events give rise to a mapping f_{i+1} which maps events of M_{i+1} to events of M_i. The mapping is obtained from the *refines* clauses of event definitions, where a *refines* $f_{i+1}(a)$.

2. They may be new events that do not refine any event in M_i. The new events for M_{i+1} will be denoted by N_{i+1}.

Recall that in Event-B [1], when new events N_{i+1} are introduced in M_{i+1}, they must be assigned a status of ‘convergent’ or ‘anticipated’. Furthermore, events which refine ‘anticipated’ events of M_i must also be assigned a status of ‘convergent’ or ‘anticipated’ in M_{i+1}. Events which refine events without a status or convergent events, do not themselves need to be assigned a status. Proof obligations on convergent events is that they must decrease the variant of M_{i+1}; anticipated events must not increase it.

We extend Abrial’s approach by introducing an additional status: ‘devolved’. A devolved event is treated similarly to an anticipated event, except that responsibility for ensuring its convergence is devolved to the CSP controller P_{i+1} rather than delayed to some future refinement step. Events that refine devolved events do not need to be assigned a status, in contrast to anticipated events. Thus in M_{i+1} the only events with a status (convergent, anticipated, or devolved) are newly introduced events N_{i+1} and those that refine M_i’s anticipated events.

Figure 1 shows the events that we will use in our case study at the various refinement levels, with the mappings f_i also shown. Convergent, anticipated, and devolved events are labelled with (c), (a), and (d) respectively.

To establish the refinement relation, several proof obligations must be discharged:

1. We require $M_i \preceq M_{i+1}$: the Event-B refinement relation holds between M_i and M_{i+1}.

2. We require $f_{i+1}^{-1}(P_i) \parallel RUN(N_{i+1}) \subseteq_T P_{i+1}$. If $N_{i+1} = \emptyset$ then this is equivalent to $f_{i+1}^{-1}(P_i) \subseteq_T P_{i+1}$, also equivalent to $P_i \subseteq_T f_{i+1}(P_{i+1})$.

3. Devolved events must not increase the variant; and if D_{i+1} is the set of all devolved events, then the additional proof obligation is that $P_{i+1} \setminus D_{i+1}$ must be divergence-free.

A series of refinement steps from $P_0 \parallel M_0$ to $P_n \parallel M_n$, discharging these three obligations at each level, establishes the following relationship:

$$(P_0 \parallel M_0) \subseteq_T f((P_n \parallel M_n) \setminus N)$$
Fig. 1. Events introduced through the development
where \(f = f_n \vdots f_1 \) is the composition of the event renamings, and \(N = N_n \cup f_n^{-1}(N_{n-1}) \cup \ldots \cup (f_0; \ldots; f_2)^{-1}(N_1) \) is the set of all the events introduced in the refinement steps, appropriately renamed.

Furthermore, if \(M_n \) contains no anticipated events, then \((P_n \parallel M_n) \setminus N \) is divergence-free. This will be the case for a complete series of refinement steps, since the final machine will have no anticipated events outstanding.

![Fig. 2. Level 0: Machine \(M_0 \) events and control process \(P_0 \)](image)

3 Bounded Retransmission Protocol

This case study illustrates the transfer of a file by sending data packets over an unreliable medium. CSP is used to describe the repetitious behaviour in the sender (repeated transmission, and progress through the file) and the receiver (progressive receipt of the data packets), whereas the Event-B part of the model focuses on the state. For the purposes of the case study we focus only on the unreliability of the transmission medium, allowing reliable acknowledgements.

Level 0

In the initial level, given in Figure 2, we see the CSP controller split into a sender controller and a receiver controller. We begin with Abrial’s model, with a single sender and a single receiver event. The event `brp` occurs after the protocol has completed.

Level 1

In the first refinement step the `progress` events are split into `success` and `failure` events, and an additional requirement on the relationship between the
SN_success
refines
SN_progress
when
s_st = working
r_st = success
then
s_st := success
end

SN_failure
refines
SN_progress
when
s_st = working
then
s_st := failure
end

RCV_success
refines
RCV_progress
when
r_st = working
then
r_st := success
end

RCV_failure
refines
RCV_progress
when
r_st = working
s_st = failure
then
r_st := failure
end

\textbf{invariant:} \ I_1 : s_st = success \Rightarrow r_st = success

\begin{align*}
P_1 &= S_1 \parallel R_1 \\
S_1 &= (\text{SND_success} \rightarrow \text{brp} \rightarrow \text{STOP}) \sqcap (\text{SND_failure} \rightarrow \text{brp} \rightarrow \text{STOP}) \\
R_1 &= (\text{RCV_success} \rightarrow \text{brp} \rightarrow \text{STOP}) \sqcap (\text{RCV_failure} \rightarrow \text{brp} \rightarrow \text{STOP})
\end{align*}

\textbf{Fig. 3.} Level 1: Machine M_1 events and control process P_1
sender’s and the receiver’s final state is introduced. The resulting machine and controller are given in Figure 3. The associated renaming function is
\[
\begin{align*}
 f_1(\text{SND_success}) &= f_1(\text{SND_failure}) = \text{SND_progress} \\
 f_1(\text{RCV_success}) &= f_1(\text{RCV_failure}) = \text{RCV_progress} \\
 f_1(\text{brp}) &= \text{brp}
\end{align*}
\]
There are no new events at this level.

Then \(P_0 \sqsubseteq_T f_1(P_1) \). Also each event \(a \) of \(M_1 \) has that \(a \text{ refines } f_1(a) \). Hence
\[
P_0 \ || \ M_0 \sqsubseteq_T f_1(P_1 \ || \ M_1)
\]

Level 2

<table>
<thead>
<tr>
<th>RCV_recv_current_data</th>
<th>RCV_success</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>when</td>
</tr>
<tr>
<td>convergent</td>
<td>(r_st = \text{working})</td>
</tr>
<tr>
<td>when</td>
<td>(r + 1 < n)</td>
</tr>
<tr>
<td>(r := r + 1)</td>
<td>(r := r + 1)</td>
</tr>
<tr>
<td>(g := g \cup { r + 1 \mapsto p(r + 1) })</td>
<td>(g := g \cup { r + 1 \mapsto p(n) })</td>
</tr>
<tr>
<td>end</td>
<td>end</td>
</tr>
</tbody>
</table>

| variant: | \(V_2 : n - r \) |

\[
P_2 = S_2 \ || \ R_2 \\
S_2 = S_1 \\
R_2 = \text{RCV_recv_current_data} \rightarrow R_2 \\
\square \text{RCV_success} \rightarrow \text{brp} \rightarrow \text{STOP} \\
\square \text{RCV_failure} \rightarrow \text{brp} \rightarrow \text{STOP}
\]

Fig. 4. Level 2: Machine \(M_2 \) new and altered events, and control process \(P_2 \)

In the second refinement step, we introduce the data file \(p : 1..n \rightarrow D \) to be transferred. Reception of data packets will be modelled with a new convergent event in the receiver part of the description, an adjustment to \(\text{RCV_success} \), with all other events remaining unchanged. A loop is introduced into the CSP controller. Observe that in this example it is the convergence of the \(B \) event that ensures that the new event cannot occur indefinitely.

\(N_2 \) is the set of events that have been newly introduced at this level. There is only one such event:
\[
N_2 = \{ \text{RCV_recv_current_data} \}
No event renaming has occurred, so f_2 will be the identity function and can be ignored. This will be the case with all subsequent refinement levels.

The new event introduced for M_2, and the event strengthened from M_1 and M_2, are given in Figure 4, along with the control process P_2.

Then $P_1 || RUN(N_2) \subseteq_T P_2$.

Hence $(P_1 || M_1) || RUN(N_2) \subseteq_T (P_2 \parallel M_2)$.

Level 3

In the third refinement step, we make use of the new status for events in controlled components: ‘devolved’. We introduce new events into the sender controller: a devolved event, a convergent event, and an anticipated event. We also refine two of the receiver events. These are given in Figure 5. All other events remain unchanged. We also introduce a data channel db which is set and reset by the sender when sending data.

The CSP controller, shown in Figure 6, is used to manage the flow of events in the sender. In the pure Event-B version [1], an additional control variable is needed to manage the interaction between the sender events. Here, the relationship between their occurrence is given explicitly in S_3.

The requirement $M_2 \not\leq M_3$ requires that $SND_{rcv_{curr_ack}}$ decreases the variant V_3, that $SND_{timeout}$ does not increase V_3, and that the strengthened receiver events are appropriate refinements. We must also show that the devolved event SND_{snd_data} does not increase V_3.

Then $P_2 || RUN(N_3) \subseteq_T P_3$, where

$$N_3 = \{SND_{snd_data}, SND_{rcv_{curr_ack}}, SND_{timeout}\}$$

Observe also that $P_3 \setminus D_3$ is divergence-free, where $D_3 = \{SND_{snd_data}\}$.

Thus $(P_2 \parallel M_2) ||| RUN(N_3) \subseteq_T (P_3 \parallel M_3)$.

Level 4

In the final refinement step, we refine the anticipated event $SND_{timeout}$ by a convergent event. This is achieved by introducing a counter variable c which places a bound on the number of times the $SND_{timeout}$ event can occur without receiving an acknowledgement.

We also model the unreliability of the data channel by introducing the new event $DMN_{data_channel}$ corresponding to loss of data. The new event and the changed events are given in Figure 7.

At this level, the timeout is refined to a convergent event. Also, the new event $DMN_{data_channel}$, which resets the data channel db, is convergent. All events in M_3 are refined by their corresponding events in M_4. Hence $M_3 \not\leq M_4$. Thus $(P_3 \parallel M_3) ||| RUN(N_4) \subseteq_T (P_4 \parallel M_4)$.
<table>
<thead>
<tr>
<th>Event</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>SND_snd_data.status</td>
<td>devolved</td>
<td>when $s_{st} = \text{working}$ then $d := p(s + 1)$ $db := \text{TRUE}$ end</td>
</tr>
<tr>
<td>SND_rcv_curr_ack.status</td>
<td>convergent</td>
<td>when $s_{st} = \text{working}$ $s + 1 < n$ $r = s + 1$ then $s := s + 1$ $db := \text{FALSE}$ end</td>
</tr>
<tr>
<td>SND_timeout.status</td>
<td>anticipated</td>
<td>when TRUE then skip end</td>
</tr>
<tr>
<td>RCV_rcv_current_data</td>
<td></td>
<td>when $r_{st} = \text{working}$ $r + 1 < n$ $r = s$ $db = \text{TRUE}$ then $r := r + 1$ $g := g \cup { r + 1 \mapsto d }$ end</td>
</tr>
<tr>
<td>RCV_success</td>
<td></td>
<td>when $r_{st} = \text{working}$ $r + 1 = n$ $r = s$ then $r_{st} := \text{success}$ $r := r + 1$ $g := g \cup { r + 1 \mapsto d }$ end</td>
</tr>
</tbody>
</table>

Invariant: $J_3 : g = \{1..r \} \leq p$
Variant: $V_3 : (n - s)$

Fig. 5. Level 3: Machine M_3 new and changed events

$$P_3 = S_3 \parallel R_3$$

$S_3 = \text{SND_snd_data} \rightarrow \text{SND_rcv_curr_ack} \rightarrow S_3$
- \blacksquare $\text{SND_success} \rightarrow \text{brp} \rightarrow \text{STOP}$
- \blacksquare $\text{SND_fail} \rightarrow \text{brp} \rightarrow \text{STOP}$
- \blacksquare $\text{SND_timeout} \rightarrow S_3$

$R_3 = R_2$

Fig. 6. Level 3: Control process P_3
variant: $V_4 : (MAX - c) + \#(\{FALSE\} -\{db\})$

$P_4 = P_3 \ || \ RUN(N_4)$
where
$N_4 = \{DMN_data_channel\}$

Fig. 7. Level 4: Machine M_4 new and changed events, and control process P_4
Refinement chain

Finally, we consider the whole chain of refinements from \(P_0 \parallel M_0 \) to \(P_4 \parallel M_4 \).

The set of all new events introduced is given by \(N = N_2 \cup N_3 \cup N_4 \). The relationship between the initial and final levels is:

\[
P_0 \parallel M_0 \subseteq_T f_1 ((P_4 \parallel M_4) \setminus N)
\]

Further, there are no anticipated events left in \(M_4 \). Hence \((P_4 \parallel M_4) \setminus N \) is divergence-free.

4 Discussion

This paper has shown the development of a simple bounded retransmission protocol in Event-B\(\parallel \)CSP through a chain of refinement steps. Each step illustrates a refinement rule underpinned by the Event-B\(\parallel \)CSP semantics. The result is a description of the protocol with a clear relationship to the original specification. Further, though not considered explicitly in this paper, the protocol transmitting the file is also deadlock-free. Establishing this requires rules concerned with failures refinement or deadlock-freedom beyond the scope of this paper.

Our example has been chosen in part to enable comparison with the pure Event-B approach taken in [1]. In our approach, inclusion of the CSP controllers alongside the Event-B description has allowed a clearer and more natural expression of the flow of control of events, particularly with respect to the timeout and repeated transmission of the data. It also allows for simpler event descriptions in the Event-B machine, since control variables in event guards and assignments can be removed where their effect is now taken care of by the CSP controller. In our view the overall behaviour of the system is easier to understand. The cost of this benefit is the need to reconcile two formalisms, and some overhead in ensuring consistency between them.

In terms of tool support available for the approach, one notable model-checking tool that checks combinations of CSP with Event-B (and also classical B) is ProB [5], which allows Event-B machines with CSP controllers to be explored for consistency. Results from this form of model-checking augment our approach, since it supports the verification of machine invariants under CSP controllers, even if the machine in isolation is not consistent. Our rules for establishing consistency do not yet cover this case, since they require consistency of the Event-B machine. ProB also supports refinement checking of combinations, though currently this is practicable only on small examples. Alongside ProB, support for the approach will also come from Event-B tools such as the RODIN platform [2], and from CSP tools such as FDR [3].

References

