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Energy-surface calculations for nuclides in the neutron-rich 190

74W116 region show consistently that
the collective rotation of a deformed oblate shape is an energetically favoured mode, especially for
angular momenta I > 12h̄. By comparing the calculations with existing experimental data, it is
concluded that the reported t1/2 ∼ 1 ms isomer in 190W may be an oblate shape isomer.

The small number of oblate-shaped nuclei found in na-
ture, compared with the many prolate nuclei, is a sur-
prising feature of nuclear structure, which seems to be
related to the strength of the nuclear spin-orbit interac-
tion [1]. Furthermore, with increasing angular momen-
tum, the collective rotation of an oblate shape, about an
axis perpendicular to its axis of symmetry, is disadvan-
taged relative to prolate rotation, on account of the mass
distribution leading to a larger moment of inertia for the
latter. Therefore, the prediction that there would be “gi-
ant backbending” in the well deformed nuclide 180Hf at
I ≈ 26h̄, made by Hilton and Mang in 1979 [2], was re-
markable. They performed HFB calculations to show
that collective oblate rotation, incorporating rotation-
aligned nucleons, could take place at a lower energy than
prolate rotation. The transition from one shape to the
other would represent a striking and sudden structural
change, quite unlike anything yet observed. Neverthe-
less, despite experimental and theoretical advances [3–5],
experimental evidence for the oblate mode in the mass-
180 region has been inconclusive. For example, it has not
proved possible to reach high enough angular momentum
in 180Hf [6], though some evidence for oblate rotation has
been found in 175Hf at I ≈ 40h̄ [5]. However, it has been
shown, on the basis of Total Routhian Surface (TRS) cal-
culations [3], that the angular momentum at which oblate
rotation becomes favoured decreases with increasing neu-
tron number. Therefore, more detailed investigation of
neutron-rich nuclei may give the best chance of finding
the oblate rotational mode in this mass region. Indeed, it
can be argued [3] that this region is optimal on account
of reinforcing proton and neutron shell structures, with
both Fermi levels being high (but not too high) in their
respective shells. While a similar effect occurs for neu-
trons in the mass-130 region [7], with associated oblate
states, the protons then favour prolate shapes at high
angular momentum. The competing proton and neutron
contributions lead to triaxiality, which itself has interest-
ing consequences [8, 9].

In the present work, we investigate the neutron-rich
mass-190 region theoretically, with particular attention
to 190W, where a t1/2 ∼ 1 ms isomer was found in a
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projectile-fragmentation experiment [10]. Rather than
the then proposed prolate, high-K interpretation (where
K is the angular momentum projection on the symmetry
axis) we now argue that the isomer may be an oblate,
(i13/2)

2 rotational-aligned state. This lays the founda-
tion for the “giant backbending” predicted by Hilton and
Mang [2].

TRS calculations have been performed for even-even
nuclides in the mass-190 region, including 186−190Yb,
188−192Hf, 186−196W, 190−200Os and 192−200Pt. The
single-particle energies are obtained from the deformed
Woods-Saxon potential [11], with the Lipkin-Nogami
(LN) treatment of pairing [12]. This avoids the spuri-
ous pairing phase transition encountered in the simpler
BCS approach. The pairing stength, G, is determined
firstly by the average-gap method [13] and then adjusted
by fitting experimental odd-even mass differences [14],
which gives an enhancement of about 10% in the G val-
ues for both neutrons and protons. The increased pair-
ing strengths lead to consistent moments of inertia and
multi-quasiparticle energies [14, 15]. The total energy of
a configuration consists of a macroscopic part which is
obtained from the stardard liquid-drop model [16] and a
microscopic part resulting from the Strutinsky shell cor-
rection [17], δEshell = ELN − ẼStrut. Calculations are
performed in the lattice of quadrupole (β2, γ) deforma-
tions with hexadecapole (β4) variation. For a given ro-
tational frequency, pairing is treated self-consistently by
solving the cranked LN equation at any given point of
the deformation lattice and then the equilibrium defor-
mation is determined by minimizing the obtained TRS
(for details, see e.g. refs [18, 19]). Quadrupole pairing
in doubly stretched coordinate space [20] has a negligi-
ble effect on energies, but is included because it has an
important influence on collective angular momenta [19].

The results of the present calculations of ground-state
shapes are broadly consistent with previous work [21, 22]
where it has been noted that there is a predicted transi-
tion from prolate to oblate shapes with increasing neu-
tron number. However, the inclusion of the axially asym-
metric γ degree of freedom in the present work adds con-
siderable clarity to the nature of the shape transition.
For example, in the ytterbium isotopes, the TRS calcu-
lations predict the ground-state shape change to occur
between 186Yb116 (β2 = 0.205, γ = −1◦) and 188Yb118

(β2 = 0.188, γ = 60◦) with clear prolate and oblate
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FIG. 1: TRS plots in the β2, γ plane for 190W (upper panels)
and 192Os (lower). Rotational frequencies are h̄ω = 0.20 MeV
(left) and 0.22 MeV (right).

minima, respectively. However, the corresponding shape
change is less distinct for osmium isotopes, and takes
place between N = 118 and 120. The calculated triaxial-
ity of the platinum isotopes is in accord with other work
[23].

Here we focus on the angular momentum degree of free-
dom for the N = 116 isotones 188Hf, 190W and 192Os,
which all have calculated prolate ground-state shapes.
In each case, at low rotational frequency, h̄ω ≈ 0.22
MeV, there is a sudden transition to oblate rotation as
the lowest-energy collective mode. This can be associ-
ated with the rotation alignment, at oblate shape, of
a pair of i13/2 neutrons, contributing 12 units of an-
gular momentum. It is the same process as has been
proposed previously [2, 3], but now, at higher neutron
number, the prolate−oblate change occurs at lower an-
gular momentum. Indeed, it seems to occur at the low-
est possible angular momentum, 12h̄, for the full align-
ment of an i13/2-neutron pair. Furthermore, with in-
creasing rotational frequency, the oblate shape remains
energetically favoured, as proton alignments contribute
to neutron alignments in building the angular momen-
tum. TRS plots, in the critical shape-changing region
of rotational frequency, are shown in Figure 1 for 190W
and 192Os. In both cases, the angular momentum jumps
by 12h̄, I = 4 to 16, over a small rotational-frequency
interval, h̄ω = 0.20 to 0.22 MeV, due to the rotation

alignment of an i13/2-neutron pair. In 190W the associ-
ated shape change is from prolate (γ = −3◦) to oblate
(γ = −62◦), while in 192Os the shape change is from
triaxial (γ = −29◦) to oblate (γ = −62◦).

The 190W situation is now considered in the context
of existing experimental data [10, 24]. The t1/2 ∼ 1
ms isomer, which feeds into the ground-state rotational
band at Iπ = (10+), was tentatively assigned a Kπ =
10− 2-quasiparticle Nilsson configuration, ν11/2+[615]⊗
ν9/2−[514], based on the similar energies of known
Kπ = 10− isomers in 190,192Os [25], and supported,
at least qualitatively, by multi-quasiparticle calculations
[10]. However, as part of the present work, configuration-
constrained calculations [15] have been carried out to
compare the excitation energies in detail. Energies and
shape parameters are given in Table I. It is now found
that, while the experimental 190,192Os Kπ = 10− energies
are well reproduced by the calculations, as illustrated in
Figure 2, there is a significant discrepancy for the cor-
responding state in 190W. If, in fact, there is another
isomer at lower energy, matching the theoretical predic-
tion for 190W, then its non-observation experimentally
would not be surprising. Its lower energy would lead to a
significantly longer lifetime, with loss of the time correla-
tions that are needed for association of the γ-ray events
with the arrival of 190W ions following fragmentation re-
actions.

TABLE I: Calculated Kπ = 10− energies and deformation
parameters, including experimental energies for comparison.

Eexp (keV) Ecalc (keV) β2 β4 γ◦

190Os 1705 1700 0.157 −0.053 −1
192Os 2015 1920 0.147 −0.053 0
190W 2360±25 1633 0.162 −0.057 −1

We have searched in detail, through TRS and
configuration-constrained calculations, for alternative
configurations which might account for the observed iso-
mer in 190W. The only reasonable solution is to identify
the bandhead of the oblate rotation-aligned structure as
the probable explanation. The energy is approximately
correct, but in these calculations the energy of the band-
head itself is not well defined, due to the calculations
being performed in a rotational-frequency basis, rather
than an angular-momentum basis. Extrapolation of the
theoretical spin-projected energies gives an estimate of
2250 keV for the Iπ = 12+ state, with an uncertainty
from the extrapolation of about 150 keV. This compares
well with the experimental isomer energy of 2360±25 keV
[10, 24]. Also, inspection of comparable rotation-aligned
(i13/2)

2 structures known to exist in neighbouring nu-
clides is valuable. Figure 3 shows data for N = 116 iso-
tones, based the recent interpretation of Levon et al. [26]
for 194Pt and 196Hg. It is seen that the 12+ (i13/2)

2 iso-

mers in 194Pt and 196Hg are at similar energies to the iso-
mer in 190W. The corresponding isomer energy for 192Os
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FIG. 2: Comparison of experimental (full line) and calculated
(dashed line) isomer energies for 190Os, 192Os and 190W. Ex-
perimental half-lives are indicated.

is unknown experimentally, though it is notable that, in
addition to the 6 s, Kπ = 10− isomer, a t1/2 ∼ 200 ns
isomer has also been identified, feeding into the ground-
state band at high spin [27]. From the calculations, an
oblate Iπ = 12+ isomer is expected at about 2100 keV
in 192Os. This stable nuclide needs further experimental
investigation.

The implications of Figure 3 are striking. We propose
that the observed t1/2 ∼ 1 ms isomer in 190W may be an
oblate rotation-aligned state, with its long half-life deriv-
ing from the substantial shape change required for its de-
cay to the prolate ground-state band. The much shorter
(few ns) half-lives of the comparable isomers in 194Pt and
196Hg can then be due to the much less dramatic shape
changes involved, as their ground-state bands are weakly
deformed and triaxial (see also ref. [28]). Note that for
low-energy E2 decays in Z ≈ 80 nuclei, the strong varia-
tion of the electron conversion coefficient with γ-ray en-
ergy [25] leads to little dependence of half-life on transi-
tion energy. Hence the large half-life difference between
the 194Pt and 190W isomers could not be ascribed solely
to the energies of their E2 (12+ → 10+) decays, which

are uncertain in both cases.
Confirmation of the oblate shapes requires additional

experimental data. The combination of quadrupole mo-
ments, g-factors, and transition-rate hindrance factors
[29], should be able to give firm information for both
190W and 192Os. The isomerism is a key feature in giving
access to these observables. Also, according to the cal-
culations, the rotational bands above the oblate isomers
should be decoupled and have high rotational alignments,
contrasting with the strongly coupled bands associated
with the alternative prolate, high-K interpretation. The
190W structure is a candidate for a classic case of “giant
backbending”, of the type originally described by Hilton
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FIG. 3: Comparison of experimental isomer energies and half-
lives for N = 116 isotones.

and Mang [2].
In summary, the need to understand better the exci-

tation energy and structure of an isomer in 190W has
led to detailed energy-surface calculations and compar-
isons with neighbouring nuclides. It is concluded that
the t1/2 ∼ 1 ms isomer in 190W could correspond to a
predicted oblate shape isomer.
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