University of Surrey

Test tubes in the lab Research in the ATI Dance Research

A fast sonochemical approach for the synthesis of solution processable ZnO rods

Palumbo, M, Henley, SJ, Lutz, T, Stolojan, V and Silva, SRP (2008) A fast sonochemical approach for the synthesis of solution processable ZnO rods JOURNAL OF APPLIED PHYSICS, 104 (7). ? - ?. ISSN 0021-8979

[img]
Preview
PDF
fulltext.pdf

Download (482kB)

Abstract

A solution based sonochemical synthesis method for ZnO rods is presented with a resulting growth rate in excess of 15 times faster than previously reported. Such material is solution processable and could be exploited in the fabrication of transparent conductors and/or large area electronics via inkjet printing methods or solution based self-assembly techniques. To understand the crystal structure and defects chemistry, the as-synthesized wurtzite crystal structures were compared and contrasted with rods grown by the more traditional and well characterized hydrothermal growth method. Fluorescence spectra were recorded and the emission characteristics correlated with the structural and conductive properties of the ZnO rods. In particular, the sonochemical crystals appear to have a higher degree of order with fewer defects. This study represents a first step toward the tailoring of the electronic properties of ZnO rods. In particular, we will concentrate on the influence that native defects have on electrical conduction and on photoluminescence. Furthermore, we show how the intensity of the ultrasonic power exploited in this synthesis has a direct influence on the crystal quality as revealed by a comparative study. An optimum value between 30% and 35% of the maximum amplitude of a 20 kHz ultrasonic probe was found to give the best conditions for the growth of crystals with fewer defects density, while at ca. 25% of the maximum amplitude we observed the higher intensities for the fluorescence spectra both in the ultraviolet and in the visible range.

Item Type: Article
Uncontrolled Keywords: Science & Technology, Physical Sciences, Physics, Applied, Physics, PULSED-LASER ABLATION, QUANTUM DOTS, THIN-FILMS, NANORODS, GROWTH, BAND
Related URLs:
Divisions: Faculty of Engineering and Physical Sciences > Electronic Engineering > Advanced Technology Institute > Nano-Electronics Centre
Depositing User: Mr Adam Field
Date Deposited: 27 May 2010 14:07
Last Modified: 23 Sep 2013 18:26
URI: http://epubs.surrey.ac.uk/id/eprint/207

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800