Interaction of PPARγ2 gene Pro12Ala and PPARα gene Leu162Val SNPs with dietary intake of fat in determination of plasma lipid concentrations in subjects at risk of the metabolic syndrome

Aseel AlSaleh, Gary S Frost, Bruce A Griffin, Julie A Lovegrove, Susan A Jebb, Thomas A B Sanders and Sandra D O’Dell.

1From King’s College London, School of Medicine, Diabetes and Nutritional Sciences Division, London, United Kingdom (AA, SDO, TABS); Nutrition and Dietetic Research Group, Imperial College, London, United Kingdom (GSF); School of Biomedical & Molecular Sciences, University of Surrey, Guildford, United Kingdom (BAG); Department of Food Biosciences, University of Reading, Reading, United Kingdom (JAL); MRC Human Nutrition Research, Cambridge, United Kingdom (SAJ).

2Supported by the UK Food Standards Agency (project NO2031) (GF, BAG, JAL, SAJ, TABS). This trial was registered at clinicaltrials.gov as ISRCTN29111298. Foods were supplied by Unilever Food and Health Research Institute (Unilever R&D, Vlaardingen, Netherlands), Cereal Partners UK (Welwyn Garden City, Hertfordshire, United Kingdom), Grampian (Banff, United Kingdom), Weetabix Ltd (Kettering, United Kingdom) and Sainsbury’s Supermarkets Ltd (London, United Kingdom). None of these providers had any role in the design and implementation of the study or analysis and interpretation of the data. AA was supported by a studentship from the Saudi Arabian Ministry of Higher Education.

3Address correspondence to Dr Sandra O’Dell, King’s College London, School of Medicine, Diabetes and Nutritional Sciences Division, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom. Tel +44 2078483177; Fax: +44 2078484195; Email: sandra.o’dell@kcl.ac.uk.
Running head: PPAR genes, diet and plasma lipids

Names for indexing in PubMed:

AlSaleh A
Frost GS
Griffin BA
Lovegrove JA
Jebb SA
Sanders TA
O’Dell SD
Abstract

Background: The peroxisome proliferator activated receptors (PPARs) are transcriptional regulators of lipid metabolism, activated by unsaturated fatty acids.

Objective: We investigated independent and interactive effects of PPARγ2 gene PPARG Pro12Ala (rs1801282) and PPARα gene PPARA Leu162Val (rs1800206) SNP genotypes with dietary intake of fatty acids on concentrations of plasma lipids in subjects at increased cardiometabolic risk.

Design: The RISCK study is a parallel design, randomized controlled trial. Plasma lipids were quantified at baseline after a 4-wk high-SFA (HS) diet and after a 24-wk intervention with reference (HS), high-MUFA (HM) and low-fat (LF) diets. SNPs were genotyped in 466 subjects.

Results: At baseline, carriage of the PPARG Ala12 allele was associated with increased plasma total cholesterol ($n = 415; P = 0.05$), LDL-cholesterol ($P = 0.04$) and apoB ($P = 0.03$) after adjustment for BMI, age, gender and ethnicity. PPARA Val162Leu x PPARG Pro12Ala genotype interaction influenced total cholesterol ($P = 0.04$) and triglyceride ($P = 0.03$) concentrations after adjustment for covariates. After HM and LF diets, total cholesterol, LDL-cholesterol and apoB concentrations were reduced ($Ps < 0.001$) and gene x gene interaction determined LDL-cholesterol ($P = 0.02$) and triglyceride ($P = 0.002$) concentrations after adjustments. After the HM diet, carriage of both variant alleles was associated with a greater reduction in LDL-cholesterol and increase in triglycerides compared to other genotype combinations.

Conclusions: Interaction between PPARG Pro12Ala and PPARA Leu162Val genotypes is a significant determinant of plasma LDL-cholesterol and triglyceride concentrations after a high-MUFA diet.
Keywords: peroxisome proliferator activated receptor-γ (PPARγ), peroxisome proliferator activated receptor-α (PPARα), single nucleotide polymorphism, polyunsaturated fatty acid, saturated fatty acid, gene-nutrient interaction.
INTRODUCTION

The peroxisome proliferator activated receptors are master transcriptional regulators of lipid and carbohydrate metabolism (1). The major natural ligands of PPAR\(\gamma\) are polyunsaturated fatty acids and prostanoids (2) and PPAR\(\alpha\) responds to several fatty acids (3), suggesting roles in transducing nutritional into metabolic signals (4). Once activated, PPARs heterodimerise with the retinoid X-receptor and bind to specific peroxisome proliferator response elements (PPREs) in the promoter regions of target genes. Activation of PPAR\(\gamma\)2, expressed mainly in adipose tissue, stimulates adipogenesis by regulating a subset of genes involved in fatty acid transport and synthesis of triglycerides (5). PPAR\(\alpha\) plays an important role in liver, where it increases uptake of fatty acids and activates expression of genes involved in peroxisomal and mitochondrial β-oxidation (3). The PPARs are thus major regulators of lipid metabolism, capable of responding to nutritional status.

Variants of the PPAR\(\gamma\)2 gene \(PPARG\) and PPAR\(\alpha\) gene \(PPARA\) may alter the function of the receptors and their response to dietary agonists. Numerous studies have investigated associations of the single nucleotide polymorphisms (SNPs) Pro12Ala (rs1801282) in \(PPARG\) and Leu162Val (rs1800206) in \(PPARA\) with variables characterising the metabolic syndrome, although the results have been equivocal. In the original study by Deeb et al. (6), \(PPARG\) Ala12 carriers had a significantly lower BMI, but some later studies demonstrated a modest increase (7-10). Carriage of \(PPARA\) Val162 has been associated with components of the metabolic syndrome in some studies (11, 12) but not in others (13). Inconsistencies in the outcomes of SNP association studies suggest that environmental influences or gene-gene interaction may be influential. Compared to wild-type receptors, the PPAR\(\gamma\)-Ala variant exhibits reduced binding to DNA and modest impairment of transcriptional activation by pharmacological ligands \emph{in vitro} (6, 14) and the PPAR\(\alpha\)-Val form shows lower transcriptional activation in transfectants activated with ω-fatty acids (15).
These findings raise the possibility that differential responses of PPAR gene variants to endogenous ligands might influence plasma variables controlled by target genes. We hypothesised that carriage of \textit{PPARG} Pro12Ala and \textit{PPARA} Leu162Val allelic combinations might influence concentration of plasma lipids according to availability of dietary unsaturated fatty acid ligands. We studied 466 men and women aged 30-70 y at increased risk of the metabolic syndrome in the RISCK study, a highly-controlled intervention based on replacement of saturated fat with either monounsaturated fat or carbohydrate in isoenergetic diets (16). Independent and interactive effects of \textit{PPARG} Pro12Ala and \textit{PPARA} Leu162Val genotypes in determination of plasma lipid concentrations were assessed at baseline after 4 wk run-in on the high saturated fat diet and after 24 wk of dietary intervention.

\textbf{SUBJECTS AND METHODS}

\textbf{Subjects}

Ethical approval for the RISCK study (ISRCTN29111298) was granted from the National Research Ethics Service and written informed consent from participants was obtained, including subsequent genetic analyses. Men and women (age range: 30-70 y) recruited from the general population, attended a clinic in a fasting state at the participating centers (University of Reading, Imperial College London, University of Surrey and the Medical Research Council Human Nutrition Research Centre (MRC-HNR), University of Cambridge and Kings College London). 47.5\% of the subjects had metabolic syndrome according to the criteria of the International Diabetes Federation (17). 549 subjects completed the RISCK study. The current study involved 466 subjects for whom DNA samples were available. Self-reported ethnicity was recorded as White, South Asian, Black African, or other.
Study design

The RISCK study is a parallel 2 × 2 factorial design compared with a control intervention (16). The intervention diets were planned to provide similar intakes of dietary energy but to vary in the amount and type of fats and carbohydrates. All participants followed a 4-wk run-in period during which they consumed a high-saturated fat ‘reference diet’ before being randomised to the reference diet or one of four isoenergetic dietary interventions designed to lower saturated fat. In this study, the dietary intervention groups differing in carbohydrate quality were combined to focus the analyses on the manipulation of dietary fat. The resulting three dietary groups were: high saturated fat ‘reference diet’ (HS) designed to reflect saturated fat intake in a ‘Western’ diet (~18% of energy SFA, 12% MUFA, 38% total fat, 45% CHO), ‘high-MUFA diet’ (HM) in which SFA was reduced and replaced with MUFA (~10% of energy SFA, 20% MUFA, 38% total fat, 45% CHO) and ‘low-fat diet’ (LF), in which SFA was reduced through replacement of total fat with carbohydrate (~10% of energy SFA, 11% MUFA, 28% total fat, 55% CHO). The dietary intervention is described in detail elsewhere (18). Measurements made after the run-in diet are referred to as ‘baseline’. All participants followed their randomly prescribed diets for 24 wk, after which a further blood sample was collected and anthropometry measured. Unweighed 4-d food diaries (3 weekdays and 1 weekend day) were collected to record dietary intakes at baseline and in the third and the final month of the intervention. Nutrient intakes were estimated by using the food-composition database software DINO as described previously (16). Weight (in light clothing) and height (without shoes) were measured and an indwelling venous cannula was inserted into the forearm.

Blood analytic methods
Blood samples for analysis were drawn after a minimum 8-h overnight fast and serum was stored at -45 °C until analyzed. Fasting lipids including total cholesterol and triglycerides were measured as described previously (16). LDL-cholesterol was derived from the Friedwald equation. Fasted plasma phospholipid fatty acids were measured by GC at the University of Reading as described previously (18).

DNA extraction and SNP genotyping

Buffy coats removed from blood samples were stored in EDTA at -20°C. Genomic DNA was extracted from 200 µl buffy coat using an Illustra blood genomic prep mini spin kit (GE Healthcare, Amersham, UK) according to manufacturer’s instructions. Genotyping by was performed in the 466 participants for whom DNA was available. The PPARG Pro12Ala SNP (rs1801282) was genotyped by KBiosciences (Hoddesdon, UK). Genotype accuracy as assessed by inclusion of duplicates in the array was 98% and negative controls (water blanks) were included on each plate. Genotyping success rate was 89%. PPARA Leu162Val (rs rs1800206) was genotyped by Pyrosequencing (Qiagen, Crawley, UK). Template PCR amplifications were 1 cycle at 94 °C for 6 min; 50 cycles at 94 °C for 1 min, 60 °C for 45 s and 72 °C for 1 min; 1 cycle at 72°C for 10 min in a buffer containing 1X RedTaq polymerase buffer, 2.5 mM MgCl₂, 0.4 µM dNTP, 200 µM primers and 0.2 U RedTaq polymerase. Template primers were as follows: Forward: 5’-GCCAGTATTGTCGATTTCACAAGT-3’; reverse 5’-bio- TTACCTACCGTTGTGTGACATCC-3’. The forward sequencing primer was: 5’-TCGATTTCACAAGTG-3’. All reagents and primers were from Sigma-Aldrich, (Gillingham, Dorset, UK). Genotyping accuracy was 98% and success rate was 97%.

Statistical analyses
All genotype distributions were tested for deviation from the Hardy-Weinberg equilibrium by a χ^2 test with 1 df ($P > 0.05$). Statistical analyses were carried out using the SPSS version 17.0 for Windows (SPSS Inc, Chicago, IL, USA). Data were analyzed by using analysis of covariance (ANCOVA), regressing follow-up measures against baseline measures with ethnicity, baseline age, gender and diet as covariates. Outliers were excluded from the ANCOVA and were defined as points > 2.5 times the interquartile range from the median on the transformed scale at baseline, follow-up, or change from baseline. All data presented in text and tables are expressed as means ± SD or 95% CI. The effect of each diet is expressed as the follow-up values above the baseline with 95% CI. Statistical significance was taken at $P < 0.05$.

RESULTS

Baseline characteristics of subjects

The characteristics of the 466 participants in this study after the baseline reference (HS) diet are presented in Table 1. There were significant differences between males and females ($P < 0.001$) in a number of variables as shown.

SNP allele and genotype frequencies

Online supplementary Table 1 shows the allele and genotype frequencies for PPARG Pro12Ala and PPARA Leu162Val in the 466 RISCK subjects. Genotype distributions did not deviate from Hardy-Weinberg expectations. In comparison to MAFs listed on the NCBI SNP database (build 132 accessed 01/01/11) (http://www.ncbi.nlm.nih.gov/snp), the PPARG Ala12 allele was more frequent in RISCK Whites than HapMap Europeans (0.076 in HapMap-CEU) and absent in Blacks, as in HapMap-YRI (Sub-Saharan African). The PPARA Val162 allele was also more frequent in RISCK Whites (0.042 in HapMap-CEU)
and absent in Blacks, as in HapMap-YRI trios. There is no comparative data available for the
S. Asian subjects.

Independent associations of genotypes with concentrations of plasma lipids at baseline
Diet during the 4 wk run-in to baseline on the HS reference diet was monitored by weighed
intake (18). Table 2 shows plasma lipid measurements at baseline, stratified by PPARG
Pro12Ala and PPARA Leu162Val genotypes. Carriers of the PPARG Ala12 allele had 5.4%
higher total cholesterol, 5.7% higher LDL-cholesterol and 11% higher apo B than Pro12
homozygotes, differences which were significant after adjustment for BMI, age, gender and
ethnicity. There were no significant associations of PPARA Leu162Val genotype with
plasma lipid concentrations.

Effect of interaction between genotypes on concentrations of plasma lipids at baseline
Subjects for whom PPARG Pro12Ala and PPARA Leu162Val genotype data was available
(n = 401) were divided into four genotype groups defined by presence or absence of the
variant alleles. Mean concentrations of plasma lipids with respect to genotype combinations
are shown in Table 3. There was a significant interaction between genotypes as determinants
of total cholesterol and triglyceride concentrations after adjustment of all data and P-values
for BMI, gender, age and ethnicity. Carriage of PPARA Val162 was associated with higher
plasma total cholesterol and triglyceride concentrations in PPARG Ala12 carriers than in
Pro12 homozygotes at baseline.

Change in concentrations of plasma lipids after dietary intervention
Subjects were randomly assigned to continuation on the HS reference diet, or 24 wk on an
isoenergetic diet, in which saturated fat was replaced with either MUFA (HM diet) or
carbohydrate (LF diet). There was no significant difference in intake of saturated fat during the run-in between groups randomised to the interventions. Body weight was relatively stable. Further information is provided elsewhere (16, 18). The changes in % SF and % MUFA differed between the diets over the 24 wk of intervention. The HM group had significantly lower plasma phospholipid % SF than the LF group and higher % MUFA, but other fatty acid classes [(n-3) PUFA, (n-6) PUFA and trans FA] were not affected (18).

Total- and LDL-cholesterol concentrations were significantly lower after consumption of HM and LF than after the HS reference diet. ApoB concentrations differed between treatment groups and were lower after the HM and LF diets than the HS diet. There were no significant changes in plasma triglyceride concentrations (16).

Effect of interaction between genotypes on concentrations of plasma lipids after dietary intervention

Independent associations of *PPARG* Pro12Ala or *PPARA* Leu162Val genotypes with changes in concentrations of plasma lipids with respect to baseline were not significant after randomisation to continued HS reference, or switch to HM and LF diets (data not shown). Investigation of genotype interaction was based on subjects genotyped for both SNPs, with measurements of plasma lipids after HM (*n* = 227) and LF (*n* = 236) diets. There was a significant interaction between *PPARG* Pro12Ala and *PPARA* Leu162Val genotypes as determinants of plasma LDL-cholesterol, (*P* = 0.02) and triglyceride (*P* = 0.002) concentrations after adjustment for change in BMI, age, gender and ethnicity. After the HM diet, carriage of the Val162 allele caused an 8-fold greater reduction in plasma LDL-cholesterol in Ala12 carriers than in Pro12 homozygotes. In the absence of the Val162 allele, reduction in plasma LDL-cholesterol in Ala12 carriers was less than in Pro12 homozygotes.

After the LF diet, presence or absence of the Val12 allele had no effect on plasma LDL...
cholesterol concentration. Carriage of the PPARa Val162 allele caused a 15-fold greater increase in plasma triglycerides in PPARg Ala12 carriers than in Pro12 homozygotes. In the absence of the Val162 allele, plasma triglycerides only varied by 10% between Ala12 carriers and Pro12 homozygotes. After the LF diet, plasma triglyceride concentration dependent on presence or absence of the Val162 allele varied by 20%.

Figure 1 shows the follow-up concentrations of plasma LDL-cholesterol and triglycerides after the HM and LF diets above the baseline, with respect to PPARg Pro12Ala and PPARa Leu162Val genotype combinations. Data on which Figure 1 is based are available in Online Supplementary Material Table 2. The differences in plasma lipid concentrations between co-carriers of PPARg Ala12 and PPARa Val162 and all other genotype combinations were significant (P < 0.01). We also included triglyceride as a covariate in the LDL-cholesterol model to see if the relationship between these variables might explain the similarity of the same small genotype group exhibiting differences. However, the covariate was not significant, suggesting that the effects are independent of one another.

DISCUSSION

We have shown independent and interactive effects of PPARγ2 gene PPARg Pro12Ala and PPARα gene PPARa Leu162Val genotypes in determination of plasma lipid concentrations, after diets lowering intake of SFA by replacement with MUFA or carbohydrate.

The deleterious effects of dietary SFA on circulating lipids and lipoproteins are well known (19). When MUFA isocalorically replace SFA in the diet, plasma LDL-cholesterol decreases and HDL-cholesterol concentration is maintained. High MUFA diets cause significant reductions in triglycerides compared to high carbohydrate (low fat) diets (20, 21). In RISCK participants, as expected, plasma total- and LDL-cholesterol and ApoB
concentrations were significantly lower after consumption of HM and LF than after the HS reference diet. However, unexpectedly, there were no significant reductions in plasma triglyceride concentrations (16).

After the 4-wk run-in on HS diet, carriers of the *PPARG* Ala12 allele had significantly higher plasma total cholesterol, LDL-cholesterol and apoB concentrations than Pro12 homozygotes. Although SFAs are relatively poor stimulators of PPARγ activity (22) the difference between genotypes is likely to reflect lower activation of target genes by the PPARγ-Ala form (6). The *PPARA* Leu162Val genotype was not associated with plasma lipids at baseline. Others have reported similarly (13, 23, 24, 25), but associations of Val162 with higher (11, 26) and lower (27) concentrations of plasma triglycerides have previously been found. Co-carriage of *PPARA* Val162 was associated with higher concentrations of plasma total cholesterol and triglycerides in *PPARG* Ala12 carriers than in Pro12 homozygotes at baseline. One other investigation found no significant interaction between these SNPs in determination of plasma lipid concentrations (28).

Increased expression of PPARγ mRNA in adipose tissue (29) and PPARα mRNA and target genes in liver (30) after a high-fat diet in mice suggests that fat intake might influence target gene expression in humans. Neither *PPARG* Pro12Ala nor *PPARA* Leu162Val genotypes were independently associated with changes in concentrations of plasma lipids after intervention, although after randomisation, the power to detect significant changes was reduced. Various dietary interactions with Pro12Ala and Leu162Val have been reported. An initial study found total fat intake to be inversely correlated with total plasma cholesterol in *PPARG* Pro12 homozygotes, but MUFA intake was inversely associated with BMI in Ala12 allele carriers (31), i.e. the responsiveness of Ala12 carriers depended on the type of fat. Luan et al. (32) previously found greater sensitivity of Ala12 allele carriers to dietary PUFA in determination of BMI. Both findings are compatible with unsaturated fatty acids acting as
specific ligands for PPARγ (22) and lower transcriptional activity of the PPARγ-Ala variant (6) reducing adipogenesis. Reports of effects of PPARA Leu162Val interaction with fatty acid intake on plasma lipids are inconsistent, including no interaction with PUFA (33), association of Val162 with higher total- and LDL-cholesterol after a high-PUFA diet (34) and higher triglyceride after low PUFA intake (33). Our study is the first to report significant interaction between PPARG Pro12Ala and PPARA Leu162Val genotypes as a determinant of plasma lipid concentrations. After the HM diet there was a significantly larger reduction in plasma LDL-cholesterol and a significantly larger increase in triglyceride concentration in co-carriers of PPARG Ala12 and PPARA Val162 alleles than in any other genotype group. There were no such effects after the LF diet. PUFA is a stronger activator of PPARs than MUFA (22), but was constant in both interventions. As PPAR variant carriage affected plasma lipids only after the HM diet, the effects may depend on high MUFA concentration.

Evidence for influence of PPARγ and PPARα on plasma lipoprotein concentrations has mainly come from studies of pharmacological ligands in vitro and in vivo. Reported effects of PPARγ agonist thiazolidinediones are mainly increased HDL-cholesterol, increased size/decreased density of LDL-cholesterol particles and increased lipoprotein (a) (35). Reported effects of PPARα agonist fibrates generally relate to reduced plasma triglycerides and an increase in HDL-cholesterol levels (36). However, there is evidence for potential influence of PPARγ and PPARα on LDL-cholesterol concentration. The insulin-induced gene INSIG1, a key regulator of SREBP activity, is up-regulated by activation of PPARγ in rat adipose tissue by rosiglitazone (37) and of PPARα in rat liver by clofibrate (38). PPARγ activation by troglitazone reduces nuclear SREBP-2 and down-regulates LDL clearance from plasma by SREBP-2 target, the liver LDL receptor (39). Expression of the LDL receptor is also reduced by clofibrate (33). Activation of PPARα and PPARγ would thus impair LDLR
expression, down-regulate LDL clearance from plasma and increase circulating LDL-cholesterol concentration. Ovalle and Bell (40) found that troglitazone and rosiglitazone increased plasma LDL-cholesterol concentrations in humans, but LDL apoB-100 levels generally decrease in response to fibrates (36). PPARγ-Ala12 and PPARα-Val162 forms have lower transactivational ability than the wild-types (6,15). Carriers of PPARG Ala12 and PPARA Val162 would express higher LDLR activity leading to maximum clearance and the largest fall in LDL-cholesterol concentration, as observed. All the other genotype combinations showed smaller reductions in LDL-cholesterol after the HM diet. As Ala12 was associated with higher total cholesterol concentration and interaction with Val162 yielded higher LDL-cholesterol after the HS diet, the lower LDL-cholesterol in carriers of both variants after the HM diet appears to be a response to increased availability of MUFA. Goldberg et al. (35) found troglitazone and pioglitazone lowered triglyceride levels, by a mechanism that may involve enhancement of triglyceride clearance, reduction of hepatic lipase and increase in ATP binding cassette A1 (ABCA1) activity. Another mechanism may involve inhibition of hepatic very low-density lipoprotein (VLDL) secretion. In general, fibrates act to reduce VLDL apoB-100 through enhanced clearance and reduced production (36). Reduced production of VLDL is also associated with n-3 PUFA consumption (41). Lipoprotein lipase (LPL) is a rate-limiting determinant of triglyceride hydrolysis and as the LPL gene is a target of both PPARγ (42) and PPARα (15) the triglyceride-lowering effect of both receptors could be mediated by this route. Rudkowska et al. (15) showed that after n-3 PUFA dietary supplementation, LPL activity increased more in PPARA Leu162 homozygotes than in Val162 carriers and enzyme activities were inversely related to plasma triglyceride concentration. Transcription after n-3 fatty acid transactivation was also found to be higher in Leu162- than Val162-constructs containing the LPL PPRE (43). These findings are compatible with the increased triglyceride concentration that we found in carriers of the
less transcriptionally active Val162 allele after the HM diet. Co-carrying of the less active PPARG Ala12 allele could maximise the effect. One other study has examined PPARG Pro12Ala and PPARA Leu162Val interaction after dietary intervention: a 2.5 y low energy diet in obese women, in whom there were significant favourable changes in lipid profile, but no significant interactive effects at baseline or at the follow-up (44).

The strength of our study lies in its design as a randomized, tightly controlled feeding trial with high adherence and retention rates and diets with practical relevance to the general population. Limitations include reduced power after randomisation to dietary treatments, compared to that at baseline. However, the results of gene-gene interaction were highly significant for this data. Our ANOVA model used the variability of the whole dataset to measure the background variation, which was able to produce significant results even though the number of subjects was small. The results for LDL-cholesterol and triglycerides seem to be independent, which further strengthens both results and conclusion. The significance should nevertheless be treated with caution and confirmation awaits replication in a larger sample.

Acknowledgements

We acknowledge the contributions of the additional RISCK Study Group members - University of Reading: Hannah Farrant (local coordinator); Claire Lawrence, Edel Magee, and Kit Tsoi (research assistants); Darren Cole (database manager); Anna Gent, Celia Greenberg, and Caroline Stokes (coding and analyses of dietary data); Mario Siervo and Rosemary Hall (clinicians); Imperial College London: Louise Goff (local coordinator); Claire Howard, Namrata Dhopatkar and Bushra Siddiqui (research assistants); Anne Dornhurst (clinician); Kings College London: Fiona Lewis (local coordinator) Samantha
Bowen, Lan Chen and Robert Gray (research assistants); Roy Sherwood (sample analyses of clinical biochemistry); Anthony Leeds, A Shah, G Saran, J Niehuser-Saran, and JA Cockburn (clinicians); University of Reading: Rachel Gitau (local coordinator); Katie Newens and Sean Lovegrove (research assistants); University of Reading and University of Surrey: John Wright (clinician); University of Surrey: Margaret Griffin (local coordinator) and Nicola Harman (lead for lipid subclasses). We are grateful to Peter Milligan (King’s College London) for assistance with statistical analysis.

The authors' contributions were as follows – SDO and TABS conceived the current research project and developed the overall research plan; AA extracted DNA and performed the genotyping; GSF, BAG, JAL, SAJ and TABS are PIs at the five RISCK study centers and provided access to databases; AA and TABS analysed data and performed statistical analyses; SDO wrote the manuscript; SDO and TABS had primary responsibility for the final content. The authors and their research groups have a number of links with the food industry. In a personal capacity, GSF is a consultant to Coca-Cola, Premier Foods, and Unilever and TABS has acted as a consultant to Seven Seas and is a member of the Scientific Advisory Committee for the Global Dairy Platform and external scientific review committee of the Malaysian Palm Oil Board, and chairs Cadbury's Global Nutrition Advisory Panel. TABS, BAG, JAL, SAJ and GSF have received ad hoc honoraria for lectures or writing articles. In a non-personal capacity, BAG was formerly a member of an expert group known as the Fat Panel, which was supported by Dairy Crest, Kerry Gold, and Unilever; SAJ is a member of Scientific Advisory Boards for Coca-Cola, Heinz, PepsiCo, Nestlé and Kellogg's. SAJ sits on UK Government advisory boards that also include food industry members. All research groups received products from a range of food companies gratis for research purposes,
including Archer Daniel Mills, Croda, Matthews Foods, Nestle, PepsiCo, Jordan, GSK, and Unilever. AA and SDO reported no conflicts of interest.

REFERENCES

TABLE 1

Characteristics of RISCK study subjects at baseline

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All $(n = 466)$</th>
<th>M $(n = 191)$</th>
<th>F $(n = 275)$</th>
<th>M vs F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Asian [n (%)]</td>
<td>44 (9.4)</td>
<td>19 (9.9)</td>
<td>25 (9.1)</td>
<td></td>
</tr>
<tr>
<td>Black African [n (%)]</td>
<td>38 (8.2)</td>
<td>10 (5.2)</td>
<td>28 (10.2)</td>
<td></td>
</tr>
<tr>
<td>White European [n (%)]</td>
<td>367 (78.8)</td>
<td>155 (81.2)</td>
<td>212 (77.1)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>17 (3.6)</td>
<td>7 (3.7)</td>
<td>10 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Age (y)</td>
<td>52.4±9.9</td>
<td>53.5±10.3</td>
<td>51.6±9.5</td>
<td>0.04</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>28.7±4.7</td>
<td>28.6±3.9</td>
<td>28.8±5.2</td>
<td>0.56</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.5±0.7</td>
<td>1.7±0.8</td>
<td>1.4±0.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>5.6±1.0</td>
<td>5.6±1.0</td>
<td>5.6±1.0</td>
<td>0.57</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>1.4±0.3</td>
<td>1.3±0.3</td>
<td>1.5±0.3</td>
<td><0.001</td>
</tr>
<tr>
<td>ApoA1 (g/L)</td>
<td>1.2±0.3</td>
<td>1.2±0.2</td>
<td>1.3±0.2</td>
<td>0.002</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td>3.5±0.8</td>
<td>3.6±0.8</td>
<td>3.5± 0.8</td>
<td>0.14</td>
</tr>
<tr>
<td>ApoB (g/L)</td>
<td>0.97±0.3</td>
<td>1.00±0.3</td>
<td>0.96±0.3</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data is presented for all subjects who completed the study and for whom DNA was available $(n = 466)$. Values presented as mean ± SD. All variables were measured at baseline after 4-wk run-in on reference HS diet. Significance of differences between males and females was determined by students t-test. 1Self-reported ethnicity.
TABLE 2

Independent associations of \textit{PPARG} Pro12Ala and \textit{PPARA} Leu162Val genotypes with phenotypes at baseline

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>\textit{PPARG} Pro12Ala genotype</th>
<th>\textit{PPARA} Leu162Val genotype</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PP</td>
<td>PA + AA</td>
<td></td>
</tr>
<tr>
<td>Males n (%)</td>
<td>132 (77%)</td>
<td>40 (23%)</td>
<td>165 (41)</td>
</tr>
<tr>
<td>Females n (%)</td>
<td>210 (86%)</td>
<td>33 (14%)</td>
<td>237 (59)</td>
</tr>
<tr>
<td>BMI (kg/m(^2)) (^1)</td>
<td>28.8 (28.3,29.3)</td>
<td>27.9 (26.9,29.0)</td>
<td>0.14 (^1)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>5.5 (5.4,5.6)</td>
<td>5.8 (5.6,6.0)</td>
<td>\textbf{0.03}</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.5 (1.4,1.5)</td>
<td>1.6 (1.5,1.8)</td>
<td>0.14</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>1.4 (1.3,1.4)</td>
<td>1.4 (1.3,1.4)</td>
<td>0.88</td>
</tr>
<tr>
<td>ApoA1 (g/L)</td>
<td>1.2 (1.2,1.2)</td>
<td>1.2 (1.2,1.3)</td>
<td>0.55</td>
</tr>
<tr>
<td>LDL Cholesterol (mmol/L)</td>
<td>3.5 (3.4,3.6)</td>
<td>3.7 (3.5,3.9)</td>
<td>\textbf{0.04}</td>
</tr>
<tr>
<td>ApoB (g/L)</td>
<td>0.9 (0.9,1.0)</td>
<td>1.0 (1.0,1.1)</td>
<td>\textbf{0.03}</td>
</tr>
</tbody>
</table>

Data is presented for subjects for whom DNA samples were available (\(n = 466\)). All variables were measured at baseline after 4-wk run-in on reference HS diet. Values are mean (95\% CI). \textit{P}-values for analysis of variance based on a dominant model are shown, adjusted for age, gender,
BMI and ethnicity nominally significant ($P < 0.05$) and remained significant after adjustment for multiple comparisons by 2-way ANOVA are shown in bold. 1P-value BMI adjusted for gender, age and ethnicity.
<table>
<thead>
<tr>
<th>Phenotype</th>
<th>PPARRA Leu162Val / PPARG Pro12Ala genotype</th>
<th>PPARG</th>
<th>PPARA</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LL/PP (n = 293)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>5.5 (5.4,5.6)</td>
<td>0.03</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>(mmol/L)</td>
<td>5.7 (5.5,6.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td>1.5 (1.4,1.6)</td>
<td>0.13</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>(mmol/L)</td>
<td>1.6 (1.4,1.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>3.5 (3.4,3.4)</td>
<td>0.05</td>
<td>0.17</td>
<td>0.12</td>
</tr>
<tr>
<td>(mmol/L)</td>
<td>3.7 (3.5,3.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApoB</td>
<td>0.96 (0.92,0.99)</td>
<td>0.05</td>
<td>0.18</td>
<td>0.08</td>
</tr>
<tr>
<td>(g/L)</td>
<td>1.02 (0.95,1.09)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>1.4 (1.3,1.4)</td>
<td>0.91</td>
<td>0.99</td>
<td>0.91</td>
</tr>
<tr>
<td>(mmol/L)</td>
<td>1.4 (1.3,1.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApoA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3

Effect of interaction of PPARRA Leu162Val and PPARG Pro12Ala on plasma lipids at baseline
Data is presented for subjects for whom PPARG Pro12Ala and PPARA Leu162Val genotype data was available (n = 401). All variables were measured at baseline after 4-wk run-in on reference HS diet. Values are mean (95% CI). All data and P-values for analysis of variance are shown, adjusted for age, gender, BMI and ethnicity based on subjects. P-values nominally significant (< 0.05) and remained significant after adjustment for multiple comparisons by 2-way ANOVA are shown in bold.
Figure legend

Interaction between \textit{PPARG} Pro12Ala and \textit{PPARA} Leu162Val genotype groups after dietary treatments influences plasma lipid concentrations. Interaction between \textit{PPARG} Pro12Ala and \textit{PPARA} Leu162Val genotypes was a significant determinant of change in plasma concentrations of (A) LDL-cholesterol ($P = 0.02$) and (B) triglycerides ($P = 0.002$) after HM and LF diets, after adjustment for BMI, age, gender and ethnicity and corrected for multiple comparisons using 3-way ANOVA. PP represents subjects homozygous for the \textit{PPARG} Pro12 allele and PA + AA carriers of the Ala12 allele. LL represents subjects homozygous for the \textit{PPARA} Leu162 allele and LV + VV carriers of the Val162 allele. Mean follow-up concentrations of LDL-cholesterol and triglycerides (mmol/L) above the baseline, after 24 wk on HM or LF diets are shown. Bars indicate 95\% CI. The figure is based on subjects with genotypes for both SNPs and measurements of plasma lipids after HM and LF diets.