University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Phase dynamics in the real Ginzburg-Landau equation

Melbourne, Ian and Schneider, Guido (2004) Phase dynamics in the real Ginzburg-Landau equation Mathematische Nachrichten, 263-26 (1). pp. 171-180. ISSN 0025-584X

[img]
Preview
PDF
fulltext.pdf

Download (271kB)

Abstract

Spatially periodic equilibria A(X, T) = 1 - q2 eiqX+i0 are the locally preferred planform for the Ginzburg-Landau equation TA = 2XA + A - A|A|2. To describe the global spatial behavior, an evolution equation for the local wave number q can be derived formally. The local wave number q satisfies approximately a so called phase diffusion equation q = 2h(q). It is the purpose of this paper to explain the extent to which the phase diffusion equation is valid by proving estimates for this formal approximation.

Item Type: Article
Additional Information: This is a pre-print of an article published in Mathematische Nachrichten, 263-264, 171 - 180. Click here for a link to the published article. Copyright © 2004 John Wiley & Sons, Ltd.
Divisions: Faculty of Engineering and Physical Sciences > Mathematics
Depositing User: Mr Adam Field
Date Deposited: 27 May 2010 14:42
Last Modified: 23 Sep 2013 18:33
URI: http://epubs.surrey.ac.uk/id/eprint/1544

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800