University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Local and global instabilities of spatially developing flows: cautionary examples

Brevdo, L. and Bridges, Thomas J. (1997) Local and global instabilities of spatially developing flows: cautionary examples Proceedings of the Royal Society of London A, 453. pp. 1345-1364.

[img]
Preview
PDF
fulltext.pdf

Download (415kB)

Abstract

In the analysis of the linear stability of basic states in fluid mechanics that are slowly varying in space, the quasi-homogeneous hypothesis is often invoked, where the stability exponents are defined locally and treated as slowly varying functions of a spatial coordinate. The set of local stability exponents is then used to predict the global perturbation dynamics and an implicit hypothesis is that the local analysis provides at least a conservative estimate of the global stability properties of the flow. In this paper cautionary examples are presented that demonstrate a contradiction between the results of the local and global analyses. For example, a local analysis may predict stability everywhere even when the exact PDE with non-constant coefficients is ill-posed, demonstrating that global stability exponents are not, in general, bounded by the maximal local stability exponents. A key observation in this paper is the importance of distinguishing between the discrete spectrum and the continuous spectrum when comparing global and local stability exponents. This distinction is particularly significant for spatially periodic flows where, for the global flow, only the continuous spectrum is present and, hence, instability arises always in the absence of discrete spectra. New exact definitions for global absolute and convective instabilities are also given for a class of spatially periodic basic states and applied to an example based on the complex Ginzburg–Landau equation. The consequences of this example, and of the argument involved for basic states that are slowly varying in space but non-periodic, and for some problems in fluid mechanics are also presented.

Item Type: Article
Additional Information: Published in Proceedings of the Royal Society of London A, 453, 1345-1364. © 1997 The Royal Society.
Divisions: Faculty of Engineering and Physical Sciences > Mathematics
Depositing User: Mr Adam Field
Date Deposited: 27 May 2010 14:40
Last Modified: 23 Sep 2013 18:32
URI: http://epubs.surrey.ac.uk/id/eprint/1409

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800