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Abstract

We give a new characterisation of resonance in Hopf bifurcation from rela-
tive equilibria in systems with compact symmetry group. This characterisation
provides a full geometric explanation of the resonance phenomenon. In addi-
tion, we develop techniques based on normal form theory to give a complete
solution to the associated bifurcation problem.

1 Introduction

Spiral waves in planar excitable media exhibit intriguing dynamics, some of which
is now well-understood from the point of view of dynamical systems with symmetry.
The underlying symmetry group is SE(2) (rotations and translations in the plane)
and the simplest possible solution is a relative equilibrium where the time evolution
is a rigid rotation in the plane.

Many people observed the onset of quasiperiodic behaviour where the tip of the
spiral wave traces out a two-frequency “flower” pattern instead of a perfect circle. This
behaviour was termed meander by Winfree [18]. Barkley et al. [3] and Karma [12]
pointed out Hopf bifurcation as a mechanism for meander, and this was confirmed
experimentally for the Belousov-Zhabotinskii reaction by Li et al. [14]. The analysis
to this point makes use only of the group SO(2) of rotations (though we note that
the distinctive nature of the flower patterns associated with meander is due to the
full SE(2) symmetry [11]) and is in accordance with the theory of Krupa [13] for
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local bifurcations from relative equilibria in systems with compact symmetry. The
bifurcating “modulated rotating waves” are examples of relative periodic solutions.

Numerical experiments [1] and chemical experiments [14] exhibited a codimension
two point where the Hopf frequency equals the frequency of the rotating spiral wave
and the meandering motion of the spiral tip is replaced by linear drift. In a landmark
paper, Barkley [2] correctly explained this phenomenon as a new type of resonance
in systems with Euclidean symmetry.

The first mathematically rigorous results on the transition to linearly drifting
spirals were obtained by Wulff [19], and these results were further developed in [8,
10, 11, 16]. In particular, Fiedler et al. [8] generalised the theory of Krupa [13] to
apply to general finite-dimensional Lie groups, provided the isotropy subgroup of the
underlying relative equilibrium is compact. (This condition is certainly satisfied for
spiral waves.)

Subsequently, Wulff [20] extended the rigorous analysis in [19] to general finite-
dimensional Lie groups, including the group SO(3). This example is relevant to the
behaviour of spiral waves on a sphere and the resonance phenomenon is very similar
to the planar case. The underlying spiral wave rotates rigidly on the surface of the
sphere about an axis through the centre of the sphere, and Hopf bifurcation leads to
two-frequency meandering about a typically nearby axis. At a resonance (where the
Hopf frequency equals the rotation frequency) the meander is about an axis almost
perpendicular to the original axis. See also [6, 7].

From the point of view of doing calculations, the case of compact SO(3) symmetry
is much more difficult than the noncompact SE(2) case — SE(2) is solvable and the
equations of motion along the group orbit can hence be solved explicitly by successive
integrations and Fourier analysis [10]; in contrast SO(3) is semisimple. Chan [6]
used the normal form technique of Fiedler & Turaev [9] to overcome the problem of
semisimplicity and obtained an elegant solution to the SO(3) case.

There still remained a lack of clarity of the nature of the resonance phenomenon
itself. Fiedler & Turaev [9] gave a Lie algebraic definition of resonance in terms of the
structure of equations when transformed to normal form: degeneracies leading to the
existence of extra monomials in the normal form equations were termed resonances.
Wulff [20, Definition 2.5] gave a more geometric but still infinitesimal Lie-theoretic
definition of resonance which is equivalent to the condition in [9]. However, neither
paper establishes a link between the definition and the observed dynamical phenom-
ena.

In this paper, we focus on the situation where the group of symmetries is a com-
pact Lie group. We give a geometric definition of resonance, based on the theory of
maximal tori, that agrees perfectly (and provably) with the observed global dynamics.
We note that in both the SE(2) and SO(3) examples, typically the bifurcating relative
periodic solution is close (as a set in phase space) to the underlying relative equilib-
rium. It is precisely at a resonance that this closeness breaks down. In Theorem 3.8,
we prove that our definition of resonance is equivalent to this setwise continuity prop-
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erty for the dynamics. In Proposition 3.10, we prove that our definition coincides
with the definitions in [9, 20]. A consequence is that resonance is a codimension two
phenomenon for every nonabelian compact Lie group (and is impossible for abelian
groups).

In the remainder of the introduction, we sketch our approach to resonance. More
background and full details can be found in the ensuing sections. Recall that a
relative equilibrium is a solution of the form x(t) = exp(tη)x(0) where η is a Lie
algebra element. A relative periodic solution is a solution y(t) that is not a relative
equilibrium and satisfies y(T ) = σy(0) for some T > 0. The least such T is called the
(relative) period and σ is called a spatiotemporal generator.

Hopf bifurcation from a relative equilibrium x(t) = exp(tη)x(0) leads to a branch
of relative periodic solutions yλ(t) satisfying yλ(Tλ) = σλyλ(0), where Tλ → 2π/ωb as
λ → 0 and ωb > 0 is the Hopf frequency. The relationship between η and σλ (see
Proposition 2.1) is that

σλ → σ0 = exp 2π
ωb

η.

Typically, σ0 is a regular element lying in a unique maximal torus. In this case, we
say that the Hopf bifurcation is nonresonant. Otherwise, σ0 is singular and we say
that the Hopf bifurcation is resonant.

In other words, resonance occurs precisely when the Hopf frequency ωb is such
that exp 2π

ωb
η is a singular element of G.

Our main aim in this paper is to clarify the phenomenon of resonance by intro-
ducing the above definition and connecting it to the dynamics. A secondary purpose
is to use the equivalence with the definition of Fiedler & Turaev to tie this in with
Chan’s use of normal form theory. In particular, we extend Chan’s approach in the
SO(3) case to give a complete treatment of Hopf bifurcation (nonresonant and reso-
nant) from relative equilibria with trivial isotropy subgroup in systems with compact
symmetry.

Remark 1.1 (a) In principle, the results in this paper could be extended to systems
with general noncompact symmetry group, based on a study of the dependence of
(the closure of) a topologically cyclic subgroup on its generator. Additional technical
issues to be overcome are the possible noncompactness of such subgroups, and the fact
that the exponential map need not be onto. For certain groups such as the universal
cover of SL(2, R), there are elements for which no power lies in the image of the
exponential map [15, p. 164], so that Floquet-theoretic arguments are problematic.
In the absence of motivating examples, we have chosen to restrict to the case of
compact symmetry groups where the theory is particularly clean and illuminating.

(b) An important class of examples for applications is Euclidean-type groups of the
form G n Rn where G is a compact Lie group acting on Rn. It is possible to make
progress on an ad-hoc basis given that the issues for G are already solved in this paper
and there are no theoretical difficulties arising from the Rn factor. Originally, we
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intended to cover Euclidean-type groups here, but were aware of the danger of an ad-
hoc approach without sufficient fully worked-out examples; the absence of theoretical
difficulties does not exclude interesting phenomena. This was confirmed by recent
somewhat surprising calculations of Chan [5] in the case of the Euclidean group
SE(3) (isometries of three-dimensional space). We hope to explore the ramifications
of these calculations more carefully in future work.

The remainder of the paper is organised as follows. Section 2 contains background
material on Hopf bifurcation from relative equilibria. In Section 3, we give our ge-
ometric characterisation of resonance. In Section 4, we use normal form theory to
solve the bifurcation equations at a nonresonant or resonant Hopf bifurcation.

2 Hopf bifurcation from relative equilibria

Let G be a Lie group and let X be a finite-dimensional vector space. Consider
parametrised skew product equations on G×X of the form

ġ = gξ(x, λ), ẋ = f(x, λ), (2.1)

where ξ : X ×R → LG, f : X ×R → X are smooth maps, and λ ∈ R is a bifurcation
parameter. Denote solutions of these equations by (gλ(t), xλ(t)). We assume that
gλ(0) = e. (The initial condition xλ(0) is of little consequence here.)

Set ξ(0, 0) ≡ η, f(0, 0) ≡ 0, so that at λ = 0 there is the relative equilibrium

(g0(t), x0(t)) = (exp tη, 0). (2.2)

Suppose that the relative equilibrium undergoes a Hopf bifurcation at λ = 0. Generi-
cally, after centre manifold reduction, we may suppose that X = R2 ∼= C, f(0, λ) ≡ 0,
and (df)0,λ = α(λ) + iβ(λ), where α(0) = 0, α′(0) > 0, β(0) = ωb > 0. We call ωb the
Hopf frequency.

The Hopf theorem guarantees that generically there exists a unique branch of
periodic solutions xλ(t) for the ẋ-equation with period 2π/ωb(λ) where ωb(0) = ωb.
To fix notation, we suppose that the branch of periodic solutions is supercritical
(λ > 0).

The periodic solution xλ(t) corresponds to a relative periodic solution (gλ(t), xλ(t))
for equation (2.1) with relative period 2π/ωb(λ) and spatiotemporal generator σλ =
gλ(

2π
ωb(λ)

).

Proposition 2.1 lim
λ→0+

σλ = σ0 where σ0 = exp 2π
ωb

η.

Proof Write Tλ = 2π/ωb(λ) and T0 = 2π/ωb. It follows from a standard mean
value theorem argument that gµ(Tλ) → gµ(T0) uniformly in µ ∈ [0, µ0] for µ0 > 0
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sufficiently small. Therefore

|σλ − σ0| ≤ |gλ(Tλ)− gλ(T0)|+ |gλ(T0)− g0(T0)|
≤ sup

µ∈[0,µ0]

|gµ(Tλ)− gµ(T0)|+ |gλ(T0)− g0(T0)| → 0,

as λ → 0+.

Note that η ∈ LG determines the long-term behaviour of the relative equilibrium
(g0(t), x0(t)) whereas σλ ∈ G determines the long-term behaviour of the relative
periodic solutions (gλ(t), xλ(t)). Proposition 2.1 describes the connection between σλ

and η.

Convergence in phase space In the Hopf bifurcation in the ẋ-equation, the
branch of periodic solutions consists of loops Sλ = {xλ(t) : t ∈ R} ⊂ X that satisfy
Sλ → 0 (uniformly) as λ → 0+. Similarly, the relative equilibria and relative periodic
solutions define flow-invariant sets

E = {(g0(t), 0) : t ∈ R} ⊂ G× {0}, Pλ = {(gλ(t), xλ(t)) : t ∈ R} ⊂ G× Sλ, (2.3)

in the phase space G × X. However, Pλ need not converge to E in any reasonable
sense as λ → 0+. We will argue that this nonconvergence characterises resonance.

Remark 2.2 For compact Lie groups, the exponential map exp : LG → G is surjec-
tive. Hence we have the Floquet representation

gλ(t) = exp(ηλt)Rλ(t)

where ηλ ∈ LG is chosen so that σλ = exp ηλ, and Rλ : R → G is 2π/ωb(λ)-periodic.
Again, there need not exist choices such that ηλ → η as λ → 0+.

3 Resonance in compact Lie groups

In this section, we specialise the relative Hopf bifurcation in Section 2 to the case when
G is a compact connected Lie group. In Subsection 3.1, we recall background material
on maximal tori in G. In Subsection 3.2, we define resonance and we characterise
resonant bifurcations in terms of the nonconvergence of the relative periodic solutions
Pλ to the underlying relative equilibrium E.

Throughout, the Lie group G and its Lie algebra LG are identified with sets of n×n
matrices. We have the adjoint actions Ad : G → Aut(LG) and ad : LG → End(LG)
given by Adg(ξ) = gξg−1 (g ∈ G, ξ ∈ LG) and adη(ξ) = ηξ − ξη (η, ξ ∈ LG)
respectively.
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3.1 Background on maximal tori

Here, we collect some standard results about maximal tori in compact connected Lie
groups [4, 17].

Let G be a compact connected Lie group with metric | |. A torus T contained in
G is maximal if it is not contained in a torus of larger dimension. Every element of G
lies in at least one maximal torus, and all maximal tori are conjugate. The common
dimension of the maximal tori is called the rank of G, denoted rank G.

Associated to each g ∈ G is the closed subgroup H(g) = {gn : n ∈ Z}. Such
subgroups H are called topologically cyclic and have the form H ∼= Tp × Zq for some
0 ≤ p ≤ rank G and q ≥ 1. The set of g for which H(g) is a maximal torus is residual
and of full Haar measure in G.

Similarly, each Lie algebra element ξ ∈ LG generates a one-parameter subgroup
in G, the closure of which is a torus. The torus is maximal for ξ lying in a residual
set of full Lebesgue measure in LG.

Definition 3.1 An element g ∈ G is regular if g lies in a unique maximal torus.
Otherwise, g is called singular.

Let U ⊂ G be the set of regular elements. Then U is open and dense in G with
full Haar measure, and

{g ∈ G : H(g) is a maximal torus} ⊂ U,

Moreover, the set G−U of singular elements has codimension at least three in G [17,
Theorem VIII.7.7].

Let Z(g) = {h ∈ G : gh = hg} denote the centraliser of g. Then dim Z(g) ≥
rank G with equality if and only if g is regular, in which case Z(g)0 is the unique
maximal torus Tg containing g. Moreover, Z(g)0 is a torus if and only if it is a
maximal torus. (Here, Z(g)0 denotes the connected component of Z(g) containing
the identity.)

Example 3.2 If G is abelian, for example G = SO(2), then G is a torus and hence
there is a unique maximal torus in G, namely G itself. In particular, every element
of G is regular.

The next simplest case is the group G = SO(3), the group of 3 × 3 orthogonal
matrices with determinant 1. Let g be a nonidentity element of SO(3). By Euler’s
rotation theorem, g is a rotation about some axis and we can choose coordinates so

that g =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 for some θ ∈ (0, 2π). Any torus containing g lies in

Z(g)0, so let h ∈ Z(g)0. Then h preserves the eigenspaces of g so h = h1⊕h2 where h1

is a 2× 2 matrix commuting with

(
cos θ − sin θ
sin θ cos θ

)
and h2 = ±1. Since h ∈ Z(g)0,
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we must have h2 = 1 and then h1 =

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
for some ϕ ∈ [0, 2π). This

shows that Z(g)0 ∼= SO(2), so g lies in a unique maximal torus and this torus has
dimension 1. Hence rankSO(3) = 1 and the only singular element of SO(3) is the
identity element.

For A, B ⊂ G, define the (nonsymmetric) distance from A to B,

dist(A, B) = sup
a∈A

inf
b∈B

|a− b|.

The set PG of subsets of G is a metric space with Hausdorff metric

d(A, B) = dist(A, B) + dist(B, A).

Proposition 3.3 The map U → PG given by g 7→ Tg is continuous.

Proof Note that Tg = Z(g)0 = exp ker(Adg − I). As a vector space, ker(Adg − I)
depends continuously on g except at changes in dimension, but dim ker(Adg − I) is
constant for g ∈ U . Moreover ker(Adg − I) = LTg for g ∈ U . Hence g 7→ LTg

is continuous (on U). To make this precise, put the Hausdorff metric on compact
subsets of LG. Then g 7→ LTg∩C is continuous in this metric for all compact subsets
C ⊂ LG.

By the uniform continuity of exp on compact subsets, it follows that g 7→
exp(LTg ∩ C) is continuous. Choose C ⊂ LG to be an Ad-invariant compact neigh-
bourhood of 0. Given S ⊂ G and n ≥ 1, define Sn = {gn : g ∈ S}. For a fixed
maximal torus T, there exists n ≥ 1 such that (exp(LT ∩ C))n = T. Since C is
Ad-invariant and all maximal tori are conjugate, it follows that n does not depend
on the choice of maximal torus. Hence g 7→ (exp(LTg ∩ C))n = Tg is continuous.

Thus, Tg depends continuously on g ∈ U . Moreover, G−U consists of discontinuity
points in the following sense. If g1

λ and g2
λ are smooth curves in G with g1

0 = g2
0

singular, then typically: (i) g1
λ, g

2
λ ∈ U for λ 6= 0 small, and (ii) both dist(Tg1

λ
, Tg2

λ
) 6→ 0

and dist(Tg2
λ
, Tg1

λ
) 6→ 0 as λ → 0.

3.2 Definition of resonance

We return to the skew-product system (2.1). Associated to the relative equilibrium
solution (exp tη, 0) in (2.2) is the torus T0 = {exp tη : t ∈ R} ⊂ G. We assume
throughout that T0 is a maximal torus. In particular

ker adη = LT0. (3.1)

Remark 3.4 Condition (3.1) holds for an open and dense, full measure set of ele-
ments η ∈ LG. The assumption that {exp tη : t ∈ R} is a maximal torus holds on a
residual full measure set, but fails for a dense set of elements η when rank G ≥ 2.
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Definition 3.5 The Hopf bifurcation in (2.1) is nonresonant if σ0 = exp 2π
ωb

η is a
regular element of G. Otherwise, the Hopf bifurcation is resonant.

Example 3.6 If G is abelian (including G = SO(2)), we have seen that there are
no singular elements, so resonant Hopf bifurcation is impossible according to Defini-
tion 3.5.

If G = SO(3), then by Example 3.2, σ0 = exp 2π
ωb

η is singular if and only if it

is the identity element. We can write η ∈ LSO(3) as η =

 0 −ωr 0
ωr 0 0
0 0 0

 and

so σ0 =

 cos 2πωr

ωb
− sin 2πωr

ωb
0

sin 2πωr

ωb
cos 2πωr

ωb
0

0 0 1

. It follows that σ0 is resonant if and only if

mωb = ωr for some m ≥ 1.
In particular, the resonance condition for SO(3) is identical in form to Barkley’s

resonance condition for the Euclidean group SE(2). In general, the resonance condi-
tion depends on the group G, see Examples 3.13, 3.14 and 3.15.

Lemma 3.7 (a) Suppose that the Hopf bifurcation is nonresonant. Then there ex-
ists δ > 0 such that σλ lies in a unique maximal torus Tλ for λ ∈ [0, δ), and
limλ→0+ d(Tλ, T0) = 0.

(b) If the Hopf bifurcation is resonant, then generically there exists δ > 0 such
that σλ lies in a unique maximal torus Tλ for λ ∈ (0, δ). However, generically
dist(Tλ, T0) 6→ 0 and dist(T0, Tλ) 6→ 0 as λ → 0+.

Proof Part (a) follows from openness of U and Proposition 3.3. Part (b) follows
from open-density of U and the comments after Proposition 3.3.

Recall that H(σλ) = {σn
λ : n ∈ Z}. For σλ regular, we have H(σλ) ⊂ Tλ. More-

over, generically (for all but countably many parameters in a generic one-parameter
family) H(σλ) = Tλ.

We defined E and Pλ in (2.3). Note that E = T0 × {0}. Also Pλ is a
H(σλ)-invariant flow-invariant subset of G × X with Pλ/H(σλ) ∼= Sλ. Generically,
H(σλ) = Tλ in which case Pλ

∼= Tλ×Sλ is quasiperiodic with rank G+1 independent
frequencies.

Theorem 3.8 (a) If the Hopf bifurcation is nonresonant, then
limλ→0+ dist(Pλ, E) → 0 and typically limλ→0+ d(Pλ, E) → 0.

(b) If the Hopf bifurcation is resonant, then typically dist(Pλ, E) 6→ 0 and
dist(E, Pλ) 6→ 0 as λ → 0+.

Proof Part (b) is immediate from Lemma 3.7(b).
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For λ ≥ 0, let Gλ = {gλ(t) : t ≥ 0}. (Note that G0 = T0.) To prove the first
statement in part (a), we must show that dist(Gλ, T0) → 0.

Write Gλ =
⋃

n≥0 Gλ(n) where Gλ(n) = {gλ(t) : 2nπ/ωb(λ) ≤ t ≤ 2(n +
1)π/ωb(λ)}. Then for each fixed n, we have d(Gλ(n), G0(n)) → 0. In particular
dist(Gλ(n), T0) → 0 for each n.

Now Gλ(n) = σn
λGλ(0). By Lemma 3.7(a), dist(Tλ, T0) → 0 and so

dist(σn
λ , T0) → 0 uniformly in n. Hence dist(Gλ(n), T0) → 0 uniformly in n so that

dist(Gλ, T0) → 0 as required.
Moreover, generically H(σ0) = T0. In this case, we have d(H(σλ), T0) → 0,

d(Gλ, T0) → 0, and d(Pλ, E) → 0, completing the proof of part (a).

Remark 3.9 It is natural to consider setwise convergence in Lemma 3.7 and Theo-
rem 3.8. Note that pointwise convergence, limλ→0+(gλ(t), xλ(t)) = (g0(t), 0) for each
fixed t, is automatic. On the other hand, it would be too much to require that
limλ→0+ supt |gλ(t)− g0(t)| = 0.

For compact Lie groups, our definition of resonance coincides with the definitions
in [9, 20]:

Proposition 3.10 Suppose that the relative equilibrium in (2.2) undergoes Hopf bi-
furcation with frequency ωb. Then resonance occurs if and only if adη has eigenvalues
±imωb for some m ≥ 1.

Proof Let d = rank G. Then g ∈ G is singular if and only if dim ker(Adg − I) > d.
Taking g = exp 2π

ωb
η, we have Adg = exp ad 2π

ωb
η, and so ad 2π

ωb
η has at least d + 1

eigenvalues in 2πiZ. It follows from (3.1) that adη has precisely d zero eigenvalues
leaving at least two eigenvalues of the form ±imωb, m ≥ 1.

Remark 3.11 For G abelian, all elements are regular and hence resonance never
occurs. In contrast, resonant Hopf bifurcation is always of codimension two when the
compact Lie group G is not abelian.

To see this, first note that the Hopf bifurcation itself is codimension one. It suffices
to show that the set of ωb > 0 for which exp 2π

ωb
η is singular consists of isolated points

but is nonempty. Since G is not abelian, dim G > rank G, so it follows from (3.1)
that ad 2π

ωb
η has nonzero eigenvalues. Since G is compact, these eigenvalues are purely

imaginary. As ωb varies, the eigenvalues pass through 2πiZ−{0} yielding the required
codimension two points by Proposition 3.10.

Definition 3.12 In the case of resonant Hopf bifurcation, let m ≥ 1 be least such
that ±imωb are eigenvalues of adη. Then the resonance is m’th order.

Example 3.13 Consider the group G = SO(n) for n = 2d even. Let S denote the set
of matrices that have the block diagonal structure Rθ1⊕· · ·⊕Rθd

, where Rθj
∈ SO(2)
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has eigenvalues e±iθj , 0 ≤ θ ≤ π. Obviously S ∈ Z(g) for all g ∈ S and it is easily
verified that Z(g)0 = S if and only if θ1, . . . , θd are all distinct. In particular S is a
maximal torus and rankSO(n) = d = n/2.

We can suppose that η ∈ LS with eigenvalues ±iωj where ω1 > ω2 > · · · > ωd > 0.
Then exp 2π

ωb
η is singular if and only if 2π

ωb
ωj = ±2π

ωb
ωk mod 2π for some j, k yielding

the condition for resonance

mωb = ±ωj ± ωk, m ≥ 1, 1 ≤ j < k ≤ d.

(Of course, in the special case G = SO(2), the resonance condition is never satisfied.)

Example 3.14 The case G = SO(n) = SO(2d+1) with n odd is similar to the even
case, taking S to be the set of matrices Rθ1 ⊕ · · ·⊕Rθd

⊕ 1. We obtain rankSO(n) =
d = (n − 1)/2 and the condition for regularity is that the θj are all distinct and
different from 0.

This time, η has eigenvalues ±iωj and 0 where ω1 > ω2 > · · · > ωd > 0. We
obtain the conditions for resonance

mωb = ±ωj ± ωk, m ≥ 1, 1 ≤ j < k ≤ d,

and
mωb = ±ωj, m ≥ 1, 1 ≤ j ≤ d.

Example 3.15 Consider the special unitary group G = SU(n), n ≥ 2, consisting
of n × n complex matrices A satisfying A∗A = I and det A = 1. Let S denote the
(n−1)-torus consisting of diagonal complex matrices g ∈ SU(n). The diagonal entries
αj ∈ C, 1 ≤ j ≤ n satisfy |αj| = 1 and α1 · · ·αn = 1. Obviously, S ∈ Z(g) for all
g ∈ S and it is easily verified that Z(g)0 = S if and only if the αj are distinct. In
particular, S is a maximal torus and rankSU(n) = n− 1.

We can suppose that η ∈ LS, so that η is diagonal with distinct nonzero entries
iωj where ω1 + · · ·+ ωn = 0. Hence exp 2π

ωb
η is singular if and only if mωb = ωj − ωk

for some m ∈ Z− {0} and 1 ≤ j < k ≤ n.
In the case n = 2, the diagonal matrices g ∈ S have α2 = ᾱ1 and so are singular if

and only if g = ±I. Hence U = SU(2)−{±I}. Moreover η ∈ LS has diagonal entries
±ωr and the condition for resonance reduces to mωb = 2ωr. In particular, resonances
for SU(2) occur twice as often as for SO(3) corresponding to the fact that SU(2) is
the double cover of SO(3).

4 Solving the skew product equations

We return to the skew-product equations (2.1). The Hopf bifurcation in the ẋ-
equation yields a branch of periodic solutions xλ(t) with period 2π/ωb(λ) where
ωb(λ) depends smoothly on λ and ωb(0) = ωb. Substituting into the ġ equation,
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we obtain ġ = gξ(xλ(t), λ). If G is abelian, then we can solve explicitly to obtain
gλ(t) = exp

∫ t

0
ξ(xλ(s), λ)ds. In the nonabelian case, we generalise the approach of

Chan [6] making use of the normal form theory of Fiedler & Turaev [9]. The reduction
to normal form is carried out in Subsection 4.1. The solutions to the normal form
equations are presented in the nonresonant and resonant cases in Subsections 4.2
and 4.3 respectively.

4.1 Reduction to normal form

Suppressing the parameter λ momentarily and following Fiedler & Turaev [9], we
transform the skew product equations (2.1) by a near-identity change of coordinates

x 7→ P (x), g 7→ g exp Q(x),

where P : R2 → R2 and Q : R2 → LG are polynomial maps. The transformation P
puts ẋ = f(x) into the standard Birkhoff normal form up to any finite order:

ż = f̃(|z|2, λ)z,

where f̃ : R × R → C is a polynomial. This has the solution ż = r(λ)eiωb(λ)t where
r(λ)2 and ωb(λ) are smooth functions of λ, with ωb(λ) = ωb + O(λ) and r(λ)2 =
aλ + O(λ2) where typically a 6= 0.

On adding the terms in the tail, it is well-known that zλ(t) persists as a periodic
solution with frequency ωb(λ) = ωb + O(λ).

Next we turn to the ġ-equation. Define Ym = ker(adη + imωbI) ⊂ LG (complexi-
fied).

Lemma 4.1 Through any required order, ξ can be transformed to the following nor-
mal forms:

Nonresonant case ξ(z, z̄, λ) = h1(|z|2, λ) where h1 : R× R → LT0.

m’th order resonance ξ(z, z̄, λ) = h1(|z|2, λ) + zmh2(|z|2, λ) + z̄mh̄2(|z|2, λ)
where h1 : R× R → LT0, h2 : R× R → Ym.

Proof Let k, ` ≥ 0 and ζ ∈ LG. Following Fiedler & Turaev [9, Definition 1.1],
we say that the monomial zkz̄`ζ is “resonant” if ζ is an eigenvector for −adη with
eigenvalue iωb(k− `). It follows from Fiedler & Turaev [9, Theorem 1.2] that through
arbitrarily high order, all terms in ξ can be removed except for the resonant mono-
mials.

Zero eigenvalues (k = `) are characterised in (3.1) and yield the h1 terms. In the
nonresonant case, there are no further eigenvalues of the form iωb(k− `). In the case
of an m’th order resonance, we have eigenvalues ±iωbm, so taking k− ` = ±m yields
the h2 terms.
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4.2 Nonresonant case

In this subsection, we use Lemma 4.1 to solve the nonresonant case.

Theorem 4.2 In the nonresonant case, for each k ≥ 1,

gλ(t) = exp{tηk(λ)} exp{Qk(t, λ) + Ek(t, λ)},

where

(i) ηk(λ), Qk(t, λ), Ek(t, λ) ∈ LG depend smoothly on
√

λ,

(ii) Qk = O(
√

λ) and Ek = o(λk),

(iii) Qk(0, λ) ≡ 0 and Ek(0, λ) ≡ 0,

(iv) t → Qk(t, λ) is 2π/ωb(λ)-periodic,

(v) ηk(λ) = η +
√

λ adbη + O(λ) ∈ LTλ = Adexp q(λ)LT0, where q(λ) =
√

λb + O(λ)
and b is a general element of LG.

In particular, the spatiotemporal generator σλ = gλ(2π/ωb(λ)) satisfies

σλ = exp
{

2π
ωb(λ)

Adexp q(λ)[η + O(λ)]
}

= exp
{

2π
ωb(λ)

[η +
√

λ adbη + O(λ)]
}

.

Proof Working first in the normal form coordinates, and neglecting the tail terms,
we substitute the 2π/ωb(λ)-periodic solution zλ(t) into the normal form for ξ. In the
nonresonant case, we have

ġ = gh1(r(λ)2, λ) = gη̂(λ),

where η̂(λ) ∈ LT0 is a smooth function of λ and η̂(0) = η. We can solve explicitly to
obtain the normal form solution gλ(t) = exp(tη̂(λ)).

Transforming back to the original coordinates, gλ(t) = exp(tη̂(λ)) exp(−q(t, λ))
where q(t, λ) ∈ LG is 2π/ωb(λ)-periodic with leading term of order

√
λ. In order to

satisfy the initial condition gλ(0) = e, we premultiply by exp(q(0, λ)) obtaining (by
equivariance) the solution

gλ(t) = exp(q(0, λ)) exp(tη̂(λ)) exp(−q(0, λ)) exp(Q(t, λ)),

where Q(t, λ) is 2π/ωb(λ)-periodic with leading term of order
√

λ, and Q(0, λ) ≡ 0.
Hence, gλ(t) = exp(tη(λ)) exp(Q(t, λ)) where η(λ) = Adexp(q(0,λ))η̂(λ). Writing q(λ) =

q(0, λ) =
√

λb + O(λ), we obtain η(λ) = η +
√

λadbη + O(λ).
Finally, we note that the Floquet representation for gλ(t) may change when the

tail terms are included. However, gλ(t) itself will be unchanged except up to a (non-
periodic) term Ek = o(λk).

A useful abbreviation is to say that gλ(t) = exp(tη(λ)) exp{Q(t, λ)} beyond all
orders where

12



(i) η(λ), Q(t, λ) ∈ LG depend smoothly on
√

λ,

(ii) t → Q(t, λ) is 2π/ωb(λ)-periodic, Q = O(
√

λ), and Q(0, λ) ≡ 0,

(iii) η(λ) = η +
√

λ adbη + O(λ) ∈ LTλ = Adexp q(λ)T0, where q(λ) =
√

λb + O(λ)
and b is a general element of LG.

4.3 Resonant case

In this subsection, we assume that there is an m’th order resonance. Substitute
zλ(t) = r(λ)eiωb(λ)t into the normal form for ξ in Lemma 4.1 (neglecting tail terms)
to obtain the equation

ġ = g[η(λ) + λm/2eimωb(λ)tΩ0(λ) + λm/2e−imωb(λ)tΩ̄0(λ)], (4.1)

where

η(λ) ∈ LT0, Ω0(λ) ∈ Ym = ker(adη + imωbI).

Viewing (η(λ), ωb(λ)) ∈ LT0×R as parameters, generically there is a codimension
one set near (η(0), ωb(0)) = (η, ωb) for which ±imωb(λ) are eigenvalues of adη(λ). This
is the set of resonant parameters.

At such a resonance, working modulo terms of order λm/2+1 in (4.1), we can
replace Ω0(λ) by the appropriate eigenfunction (still denoted Ω0(λ)) of adη(λ) so that
adη(λ)Ω0(λ) = −imωb(λ)Ω0(λ). Let Ω(λ) = Ω0(λ) + Ω̄0(λ).

Theorem 4.3 Suppose that ±imωb(λ) are eigenvalues of adη(λ) for λ ≥ 0. Then

gλ(t) = exp{t[ρ(λ) + λm/2Ω(λ)]} exp{Q(t, λ) + E(t, λ)},

where

(i) ρ(λ), Ω(λ), Q(t, λ), E(t, λ) ∈ LG depend smoothly on
√

λ,

(ii) Q = O(
√

λ) and E = o(λm/2),

(iii) Q(0, λ) ≡ 0 and E(0, λ) ≡ 0,

(iv) t → Q(t, λ) is 2π/ωb(λ)-periodic,

(v) Tλ = {exp tΩ(λ), t ∈ R} is a maximal torus for λ ≥ 0,

(vi) ρ(λ) ∈ LTλ∩Adexp q(λ)LT0, where q(λ) =
√

λb+O(λ) and b is a general element
of LG.

In particular, the spatiotemporal generator σλ = gλ(2π/ωb(λ)) satisfies

σλ = exp
{

2π
ωb(λ)

[
ρ(λ) + λm/2Ω(λ) + o(λm/2)

]}
13



Proof By construction, Adexp tη(λ)Ω0(λ) = e−imωb(λ)tΩ0(λ), and the solution to (4.1)
is

gλ(t) = exp{tλm/2Ω(λ)} exp{tη(λ)}.

Let Tλ denote the maximal torus defined by Ω(λ). Note that exp{tΩ(λ)} ∈
Z(exp 2π

ωb(λ)
η(λ)) for all t. It follows that exp 2π

ωb(λ)
η(λ) lies in Z(exp{tΩ(λ)}) for all t,

and hence lies in Z(Tλ) = Tλ. In addition, exp 2π
ωb(λ)

η(λ) ∈ T0. Hence, we have shown

that exp 2π
ωb(λ)

η(λ) ∈ Tλ ∩ T0.

Choose ρ(λ) ∈ LTλ ∩ LT0 so that exp{ 2π
ωb(λ)

η(λ)} = exp{ 2π
ωb(λ)

ρ(λ)}. Then gλ(t)
can be written in the form

gλ(t) = exp{t[ρ(λ) + λm/2Ω(λ)]}R(t, λ),

where R(t, λ) = exp{−tρ(λ)} exp{tη(λ)} is 2π/ωb(λ)-periodic.
Passing back to the original coordinates and arguing as in the proof of Theo-

rem 4.2, we obtain a solution of the form

gλ(t) = exp{t[ρ(λ) + λm/2Ω(λ)]} exp{Q(t, λ)},

where ρ(λ) ∈ Adexp q(λ)LT0 and Ω(λ) ∈ Adq(λ)LTλ. Tail terms leave gλ(t) unchanged
beyond all orders.

Remark 4.4 Note that the family of elements ρ(λ) ∈ LG correspond to singular
elements of G. When G = SO(3), the only singular element of G is the identity and
so ρ(λ) ≡ 0. This accounts for the simplified form of the solutions in [6, 7, 20]. The
new phenomenon for more general groups is that after the bifurcation some of the T0

frequencies are retained, namely those in common with the new torus Tλ. The other
T0 frequencies are switched off, while the non-common frequencies in Tλ set in at the
slow λm/2 rate.

Of course, Theorem 4.3 is vacuous for abelian groups such as SO(2), since there
are no resonant Hopf bifurcations.
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[4] T. Bröcker and T. tom Dieck. Representations of Compact Lie Groups. Grad.
Texts in Math. 98, Springer, New York, 1985.

[5] D. Chan. A normal form approach to nonresonant and resonant Hopf bifurcation
from relative equilibria. Ph. D. Thesis, University of Surrey, 2007.

[6] D. Chan. Hopf bifurcations from relative equilibria in spherical geometry. J.
Differential Equations 226 (2006) 118–134.

[7] A. Comanici. Transition from rotating waves to modulated rotating waves on a
sphere. SIAM J. Appl. Dyn. Syst. 5 (2006) 759–782.

[8] B. Fiedler, B. Sandstede, A. Scheel and C. Wulff. Bifurcation from relative
equilibria to non-compact group actions: Skew products, meanders, and drifts.
Doc. Math. J. DMV 1 (1996) 479–505.

[9] B. Fiedler and D. V. Turaev. Normal forms, resonances, and meandering tip
motions near relative equilibria of Euclidean group actions. Arch. Rational Mech.
Anal. 145 (1998) 129–159.

[10] M. Golubitsky, V. G. LeBlanc and I. Melbourne. Meandering of the spiral tip —
an alternative approach. J. Nonlinear Sci. 7 (1997) 557–586.

[11] M. Golubitsky, V. G. LeBlanc and I. Melbourne. Hopf bifurcation from rotating
waves and patterns in physical space. J. Nonlinear Sci. 10 (2000) 69–101.

[12] A. Karma. Meandering transition in two-dimensional excitable media. Phys. Rev.
Lett. 65 (1990) 2824–2827.

[13] M. Krupa. Bifurcations of relative equilibria. SIAM J. Math. Anal. 21 (1990)
1453–1486.

[14] G. Li, Q. Ouyang, V. Petrov and H. L. Swinney. Transition from simple rotating
chemical spirals to meandering and traveling spirals. Phys. Rev. Lett. 77 (1996)
2105–2108.

[15] A. L. Onishchik and E. B. Vinberg. Lie groups and Lie algebras. III. Encyclopae-
dia of Mathematical Sciences 42, Springer-Verlag, Berlin, 1991.

[16] B. Sandstede, A. Scheel and C. Wulff. Dynamics of spiral waves on unbounded
domains using center-manifold reductions. J. Differential Equations 141 (1997)
122–149.

15



[17] B. Simon. Representations of Finite and Compact Groups. Grad. Studies in Math.
10, Amer. Math. Soc., Providence, 1996.

[18] A. T. Winfree. Scroll-shaped waves of chemical activity in three dimensions.
Science 181 (1973) 937–939.

[19] C. Wulff. Theory of meandering and drifting spiral waves in reaction-diffusion
systems. Dissertation, FU Berlin, 1996.

[20] C. Wulff. Transitions from relative equilibria to relative periodic orbits.
Doc. Math. J. DMV 5 (2000) 227–274.

16


