University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Power spectra for deterministic chaotic dynamical systems

Melbourne, I and Gottwald, GA (2008) Power spectra for deterministic chaotic dynamical systems NONLINEARITY, 21 (1). 179 - 189. ISSN 0951-7715


Download (223Kb)


We present results on the broadband nature of power spectra for large classes of discrete chaotic dynamical systems, including uniformly hyperbolic (Axiom A) diffeomorphisms and certain nonuniformly hyperbolic diffeomorphisms (such as the Hénon map). Our results also apply to noninvertible maps, including Collet–Eckmann maps. For such maps (even the nonmixing ones) and Hölder continuous observables, we prove that the power spectrum is analytic except for finitely many removable singularities, and that for typical observables the spectrum is nowhere zero. Indeed, we show that the power spectrum is bounded away from zero except for infinitely degenerate observables.

For slowly mixing systems such as Pomeau–Manneville intermittency maps, where the power spectrum is at most finitely differentiable, nonvanishing of the spectrum remains valid provided the decay of correlations is summable.

Item Type: Article
Uncontrolled Keywords: Science & Technology, Physical Sciences, Mathematics, Applied, Physics, Mathematical, Mathematics, Physics, MAPS, EXTENSIONS, TURBULENCE, POINTS, DECAY
Related URLs:
Divisions: Faculty of Engineering and Physical Sciences > Mathematics
Depositing User: Mr Adam Field
Date Deposited: 27 May 2010 14:40
Last Modified: 23 Sep 2013 18:32

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800