Excimer laser nano-structuring of nickel thin films for the catalytic growth of carbon nanotubes.

Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK

Abstract

Pulse laser ablation and subsequent laser annealing at room temperature has been employed to produce nanostructured Ni on SiO$_2$/Si substrates for catalytic growth of carbon nanotubes. The resultant nanostructured surface is seen to consist of nanometer sized hemispherical droplets whose mean diameter is controlled by the initial metal thickness, which in turn is readily controlled by the number of laser pulses. Vertically aligned multiwall carbon nanotube mats were then grown using conventional plasma enhanced chemical vapour deposition. We show that within a single processing technique it is possible to produce the initial metal-on-oxide thin film to a chosen thickness but also to be able to alter the morphology of the film to desired specifications at low macroscopic temperatures using the laser parameters. The influence of the underlying oxide is also explored to explain the mechanism of nanostructuring of the Ni catalyst.

* Electronic mail: s.henley@eim.surrey.ac.uk
Since the discovery of single and multi-wall carbon nanotubes (CNTs)\(^1\,^2\) there has been intense academic and commercial interest in these fascinating structures. This interest is mainly due to the many and varied potential applications for CNTs including low threshold field emitters\(^3\,^4\) for display technologies, nano-scale circuitry\(^5\) and hydrogen storage\(^6\). CNTs have been grown by a variety of different methods including laser ablation\(^7\), arc discharge\(^8\) and more recently, thermal- and plasma-enhanced chemical vapour deposition (PECVD)\(^9\,^10\). There has been significant effort focussed on understanding the growth mechanisms of CNTs, including the study of how the size and structure of the catalysts particles (typically Ni, Fe or Co) affects the growth\(^9\,^13\). Many different techniques are used for the preparation of suitable substrates\(^12\,^14\,^15\). To date the formation of suitable catalyst substrates for CNT growth is accomplished by thermal annealing of thin films deposited by magnetron sputtering\(^12\) or thermal evaporation\(^13\). The latter study involving nanostructuring of Ni on oxide films at temperatures below 500°C. In this letter we introduce a method of producing discrete catalyst particles using a combination of pulsed laser ablation (PLA)\(^16\) and laser annealing (LA). By controlling the laser parameters, such as number of pulses and fluence, we are readily able to control the morphology of the nanostructured Ni films within one process technology. Since only the surface region is exposed to high (local) temperatures during annealing, the macroscopic temperature is not raised significantly thereby allowing the use of plastic or organic substrates\(^17\). This is clearly is more advantageous than requiring one growth method (magnetron sputtering or thermal evaporation) followed by conventional high temperature annealing.

Ni thin films were deposited by PLA of a 99.9% pure Ni target. A Lambda-Physik LPX 200 excimer laser operating at 248 nm was used for the ablation. The growth chamber was evacuated using a turbo pump to \(9 \times 10^{-8}\) Torr. The substrates used were SiO\(_2\)/Si with different values of oxide thickness; 235 nm and 320 nm of thermal oxide and one with only the native oxide coating. The target to substrate distance was 6 cm for all depositions. Thin films were grown using 10, 50, 200, 750, 1000, 1500, and 2000 laser shots at laser pulse energy of 100 mJ, focused onto a rotating target, producing a fluence of \(\sim 10\) J cm\(^{-2}\). The initial growth, final smoothness and thickness of the Ni films were investigated in ambient using a Digital Instruments Nanoscope IIIa atomic force microscope (AFM) operating in tapping mode.

The thin films were LA using the same excimer laser as employed for the deposition, by
diverting the optical path and passing it through a homogeniser. The films were transferred to a separate vacuum stage (typical working pressure 10^{-4} Torr) where the whole sample could be annealed by translating the stage. Typical translation rate was 1 mm/s with a laser repetition rate of 10 Hz. Post-annealing the structure of the films was investigated in a Hitachi S4000 field emission gun scanning electron microscope (SEM).

The initial stages of growth of the Ni films was investigated in the AFM by depositing Ni onto the 320 nm SiO$_2$/Si substrates. After 10 laser shots at a fluence of 10 J/cm2 the Ni had not formed a continuous film, but consisted of islands. After around 200 shots the islands had coalesced and by 1000 shots a smooth film with a root mean square roughness of < 1 nm was produced. By masking a section of the substrate prior to deposition, it was possible to measure the Ni film thickness by scanning the AFM over the step produced. 750 laser shots produced a film 6.5 ± 0.9 nm thick and 1500 shots resulted in a thickness of 8.2 ± 0.9 nm. The predicted offset for zero laser shots is a consequence of the initial island growth.

After growth the films with 750, 1000, 1500, and 2000 laser shots on the different substrates, were laser annealed at a range of laser fluences from 100 to 300 mJ/cm2. Figure 1 shows SEM images of a selection of the laser annealed films, with different initial Ni thickness, grown on 320 nm SiO$_2$/Si substrates. After annealing the Ni film was observed to break up into discrete nanometer-scale hemispherical islands. The fluence required to achieve this break up appeared to be a function of the initial film thickness and the thickness of the oxide layer on the substrate. At lower fluences the films were observed to perforate, but the break up into discrete droplets was incomplete. Above ~ 280 mJ/cm2 significant ablation of the Ni was observed. At intermediate fluences the Ni island size was unaffected by the laser fluence and the substrates used. The fluence required to nanostructure the films grown on the thinner (235 nm) thermal SiO$_2$ substrates were higher than for the corresponding Ni film on the thicker SiO$_2$ layers. On the Si substrates with only the native oxide layer, no nanostructuring was observed, as it appeared that the fluence required was higher than the ablation threshold of the film. This is most likely due to the higher thermal conductivity of Si (150 W m$^{-1}$K$^{-1}$ at 25 °C) in comparison to that of SiO$_2$ (1.34 W m$^{-1}$K$^{-1}$)18.Figure 1(a) shows a 6.5 nm thick film annealed at 200 mJ/cm2, (b) a 8.2 nm thick film annealed at 160 mJ/cm2, (c) a 11.5 nm thick film annealed at 140 mJ/cm2 and (d) a 15 nm thick film annealed at 220 mJ/cm2. It should be noted that the image in figure 1(d) is taken at a lower
The size distribution of the Ni droplets produced was obtained using commercial image analysis software19. Figure 2 shows the histograms of the Ni droplet size distributions from the films in figure 1. Note the statistics were improved, in some cases, by analysing multiple images from different regions on the same film. No difference was observed however, between different regions on the same film. The distribution of Ni droplets for the 6.5 nm thick film is a good fit to a lognormal distribution peaking at a nickel droplets size of 55 nm. The size distributions for the other values of Ni thickness appear bi-modal. By examining figure 1(d) the origin of these bi-modal distributions can be suggested. In this figure, and to a lesser extent in figure 1(c), smaller droplets are seen to lie in lines extending between the larger droplets. At fluences lower than those which causes complete break up of the films, perforation of the films is observed. The molten film around these perforations is observed to have drawn away from the centre of the hole. When the density of perforations is high the retreating molten film between two holes can coalesce into filaments. The final structure becomes an array of large droplets connected by a web of filaments. At slightly higher fluences these filaments will have enough energy to divide into smaller droplets, as is observed. Figure 2(e) shows a plot of the mean diameter of the Ni droplets as a function of initial film thickness. It can be observed that the mean droplet size increases as the initial film thickness increases, which is consistent with the thermal annealing data, of Ni thin films, by Chhowalla \textit{et al}12 at 700 °C. Thus, choosing an appropriate film thickness can be used to control the size distribution of the nickel islands.

A selection of the processed films were used as substrates for the growth of CNTs by PECVD. The growth conditions used were a substrate temperature of 700 °C, a pressure of 10 Torr (5% acetylene, remainder nitrogen) and a growth time of 10 mins at a bias of -450V. Figure 3 shows a cross-sectional SEM image of one of these samples after growth on the thinner of the two thermal oxide substrates. From figure 3 it is observed that the CNTs produced are split into two groups. One group is significantly longer and wider than the other, with diameters approximately the same as the Ni droplet size that was on the processed film, as has been observed elsewhere14. The Ni droplets can be observed at the end of these tubes, as a black dots in the SEM image. The CNTs in the second set appear as an “undergrowth” and are much shorter with smaller diameters than the first set. No Ni droplets were observed at the top of these CNTs but this may just be a consequence of the
limited spatial resolution of the SEM, compared to the size of these tubes. Figure 4 shows an AFM image of the region between the Ni droplets for the LA film shown in figure 1(d). Smaller Ni droplets can be seen covering the areas between the larger droplets. In this case the droplets are approximately 10 nm high. It is suggested that this second set of CNTs grow from thesevsmaller catalyst particles. The separation between the larger CNTs is greater than is typically observed for CNTs grown on thermally annealed Ni catalyst films. This would make this technique useful for the preparation of field emission displays, as the CNTs would be subject to less field screening from surrounding tubes20.

In conclusion it has been shown that the combination of excimer laser growth and annealing of thin metal films is a useful method for the preparation of large area substrates for CNT growth with well-defined, discrete, nano-scale catalyst particles. These substrates are prepared without any macroscopic heating of the substrate and have particle separations more suitable for the production of field emission cathodes.

Acknowledgments

The authors would like to thank the EPSRC Portfolio Grant and the CBE Programme for funding the project.
Figure Captions

FIG. 1: SEM images of laser annealed Ni films with different thicknesses. (a) 6.5 nm thick film (b) 8.2 nm (c) 11.5 nm and (d) 15 nm. Note the different scale-bar on image (d).

FIG. 2: (a)-(d) Histograms showing the Ni droplet diameter distributions for laser annealed Ni thin films shown in figure 1. (e) Plot of the mean diameter of the Ni droplets as a function of initial film thickness.

FIG. 3: Carbon nanotubes grown by PECVD at 700°C on a laser annealed Ni thin film on 235 nm SiO2/Si substrate.

FIG. 4: AFM image of the region between the Ni droplets for the LA film shown in figure 1(d)
Figure 1. Simon Henley - APL
Figure 2. Simon Henley - APL
Figure 3. Simon Henley - APL
Figure 4. Simon Henley - APL